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ABSTRACT Estimating fitness differences between allelic variants is a central goal of experimental evolution. Current methods for
inferring such differences from allele frequency time series typically assume that the effects of selection can be described by a fixed
selection coefficient. However, fitness is an aggregate of several components including mating success, fecundity, and viability.
Distinguishing between these components could be critical in many scenarios. Here, we develop a flexible maximum likelihood
framework that can disentangle different components of fitness from genotype frequency data, and estimate them individually in
males and females. As a proof-of-principle, we apply our method to experimentally evolved cage populations of Drosophila mela-
nogaster, in which we tracked the relative frequencies of a loss-of-function and wild-type allele of yellow. This X-linked gene produces
a recessive yellow phenotype when disrupted and is involved in male courtship ability. We find that the fitness costs of the yellow
phenotype take the form of substantially reduced mating preference of wild-type females for yellow males, together with a modest
reduction in the viability of yellow males and females. Our framework should be generally applicable to situations where it is important
to quantify fitness components of specific genetic variants, including quantitative characterization of the population dynamics of
CRISPR gene drives.
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THE concept of fitness lies at the core of Darwin’s theory of
evolution by natural selection. If two allelic variants differ

in fitness, the fitter allele should gradually increase in fre-
quency at the expense of the less-fit allele. In turn, studying
allele frequency changes over time can allow us to infer fit-
ness differences (Bollback et al. 2008). This rationale has
been implemented in a variety of methods for quantifying
natural selection from temporal allele frequency data. Typi-
cally, such methods employ a probabilistic model for the ex-
pected allele frequency dynamics, often based on a Wright–

Fisher process. By comparing the predictions of the model
with empirical allele frequency measurements, one can then
infer the parameters of the model. The key challenge in these
approaches is to disentangle selection from stochastic
processes such as random genetic drift and sampling noise,
which will generate fluctuations in allele frequency estimates
on top of the systematic changes due to selection. Early ap-
proaches to this end used a continuous diffusion approxima-
tion to the discrete Wright–Fisher process for calculating
transition probabilities of allele frequencies (Williamson
and Slatkin 1999; Bollback et al. 2008; Malaspinas et al.
2012). These probabilities were then used in a maximum
likelihood (ML) framework for inferring the model parame-
ters, including effective population size. More recently, im-
proved analytic approximations to the likelihood function
were developed using concepts such as spectral representa-
tions of the transition density (Steinrücken et al. 2014) and
path augmentation (Schraiber et al. 2016). Other approaches
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have employed Bayesian inference methods (Foll et al. 2015;
Ferrer-Admetlla et al. 2016) and likelihood ratio tests (Feder
et al. 2014). Some studies have explored how selection in-
ference can be extended to spatial populations (Mathieson
and McVean 2013), fluctuating environments (Gompert
2016; Shim et al. 2016), strong selection (Lacerda and
Seoighe 2014), diploid populations with dominance ef-
fects (Steinrücken et al. 2014), and scenarios of linked loci
along a recombining chromosome (Illingworth et al. 2012;
Illingworth and Mustonen 2013; Terhorst et al. 2015).

A commonlymade assumption in thesemethods is that the
effects of selection between two allelic variants can be de-
scribed by a single selection coefficient. While this may be
reasonable in many scenarios, there are also situations where
it is critical to distinguish among the individual components
that constitute fitness (Christiansen and Frydenberg 1973;
Nadeau and Baccus 1981; Sober and Lewontin 1982). Pref-
erential mate choice, for instance, can result in frequency-
dependent dynamics that cannot be mapped onto a logistic
growth model specified by a fixed selection coefficient
(Barton and Servedio 2015). Individual fitness effects could
also often differ between males and females, leading to sys-
tematic biases in genotype frequencies between sexes when
selection is sufficiently strong.

Rigorous inference of selection can include four major selec-
tion components: zygotic selection (viability from zygote to
adult), sexual selection, fecundity selection, and gametic selec-
tion that usually involves genetic elements with biased inheri-
tance (Christiansen and Frydenberg 1973; Nadeau and Baccus
1981). Evaluation of these four selection components in a nat-
ural population requires detailed population monitoring, as ob-
servations need to be recorded at four different life cycle stages
(Christiansen and Frydenberg 1973; Nadeau and Baccus 1981;
Nadeau et al. 1981; Siegismund and Christiansen 1985). Typi-
cally, the analysis of selection components in the laboratory
involves performing a series of isolated experiments designed
to individually quantify each component (Bundgaard andChris-
tiansen 1972). For example, progeny counts from controlled
crosses andbackcrosses can reveal differences in zygote-to-adult
viability as measured by deviation from Mendelian proportions
(Mukai et al. 1974). Egg counts from controlled crosses can
reveal genotype-specific differences in fecundity. Mating arenas
with either observed matings or subsequent scoring of progeny
can allow for estimation of sexual selection (Dow 1976). The
challenge with all of these methods is that it is extremely diffi-
cult to know if all attributes of a gene that may result in differ-
ential propagation have been considered, although it is possible
to test the correspondence between individual fitness compo-
nent estimates and allele frequency dynamics in cage popula-
tions (Clark and Feldman 1981; Clark et al. 1981).

In this study, we develop an ML inference framework that
can disentangle sexual, fecundity, and viability selection from
genotype frequency time series data. Our analytical approach
employs a continuous extension of the multinomial distribu-
tion, allowing us to infer effective population size simulta-
neouslywith selection parameters. As a proof-of-principle, we

apply our inference framework to empirical data obtained
from cage evolution experiments of Drosophila melanogaster,
in which we tracked relative genotype frequencies of a wild-
type and mutant version of yellow, an X-linked gene required
for black pigment formation (Drapeau et al. 2003). The mu-
tant allele disrupts yellow, resulting in a recessive yellow body
phenotype. The yellow gene is also required for the wing-
extension behavior that is part of male courtship in D. mela-
nogaster (Bastock 1956; Wilson et al. 1976). Consequently,
disruption of yellow affects mating competitiveness in male
flies (Heisler 1984; Drapeau et al. 2006).

Wefind that in cage experiments, ourML inferencemethod
can robustly distinguish between several selection models
involving preferential mate choice, fecundity, and viability,
while further distinguishing betweenmale and female fitness
costs. Suchmeasurements should become particularly impor-
tant in scenarios where fitness costs are large and allele
frequencies are expected to change rapidly, as will likely be
the case for recently proposed CRISPR gene drive approaches
(Champer et al. 2016).

Methods

Plasmid construct design and generation of transgenic
fly line

We designed a construct targeting the X-linked yellow gene in
D. melanogaster. Disruption of this gene causes a recessive
yellow phenotype, specified by a lack of dark pigment in
the adult cuticle. Our construct additionally encodes a dsRed
protein driven by a 3xP3 promoter, which produces an easily
identifiable fluorescent phenotype. dsRed is not visible in
wild-type eyes in the Canton-S background, but we observed
dsRed expression in the abdomen of younger insects and in
the ocelli.

The donor plasmid BHDyR was constructed by Gibson
assembly of the restriction digest of IHDyV1 (Champer
et al. 2017) with StuI and XhoI, and PCR amplification of
the pDsRed-attp plasmid (Gratz et al. 2014) with the
oligos dsRedY_F (59-GGGTTTTGGACACTGGGAATTCTTG-
CATGGCTAGACGAAGTTATCGTACGGGATCTAAT-39) and
dsRedY_R (59-TTAGTGGTGGTATTGCCGATGCCCACGGACG-
CGCCGGTTAAGATACATTGATGAGTTTGG-39) (IDT). Gibson
assembly of plasmids was performed with Assembly Master
Mix (New England Biolabs, Beverly, MA) and plasmids were
transformed into JM109 competent cells (Zymo Research).

The transgenic line in the study was transformed at Genet-
iVision by injecting the BHDyR donor plasmid into Canton-S
D. melanogaster embryos. Cas9 was provided by co-injection
with plasmid pHsp70-Cas9 (Gratz et al. 2013) (a gift from
Melissa Harrison, Kate O’Connor-Giles, and Jill Wildonger,
plasmid 45945; Addgene). A guide RNA (gRNA) plasmid
(BHDyg1) (Champer et al. 2017) was also included in the
injection. Concentrations of donor, Cas9, and gRNA plasmids
were 98, 94, and 58 ng/ml, respectively, in a 10 mM Tris-HCl
and 23 mM EDTA (pH 8.1) solution. The injected plasmids
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were purified with ZymoPure Midiprep kit (Zymo Research).
To obtain a homozygous fly line, the injected embryos were
reared and crossed with wild-type Canton-S flies. The prog-
eny with dsRed fluorescent protein in the eyes and abdomen,
which indicated successful insertion of the construct, were
selected and crossed with each other. The stock was consid-
ered homozygous when all male progeny had dsRed fluores-
cence for two consecutive generations.

Fly rearing and phenotyping

Flies were reared at 25� with a 14/10-hr day/night cycle.
Bloomington Standard medium was provided as food every
2 weeks. During initial phenotyping, flies were anesthetized
with CO2 and examined with a stereo dissecting microscope,
and the fluorescent red phenotype was observed using the
NIGHTSEA system.

For the cage studies, enclosures of internal dimensions 303
30330 cm (BD43030D; Bugdorm)were used to house flies. At
the start of an experiment, transgenic and Canton-S flies of
approximately the same agewere separately allowed to lay eggs
in food bottles for 2 days. These food bottles (nine for cage 1,
eight for cage 2, and five for cages 3–5) were then placed in
cages at the desired starting ratio between transgenics and Can-
ton-S flies. Eleven days later, bottles were replaced in the cage
with fresh food (at a 1:1 ratio for cage 1 and2:1 for other cages),
while leaving adult flies in the cages. Two days later, bottles
were removed again from the cages and flies retained, and fresh
food bottles were added (nine for cage 1, eight for cage 2, and
five for cages 3–5). One day later, all adult flies were frozen for
later phenotyping and food bottles were retained for 11 days to
allow the next generation to hatch. This cyclewas repeated until
the completion of the experiments. All frozen flies from each
generation were phenotyped within 2 weeks of freezing.

Data availability

Our experimental data consists of the genotype counts in the
five cage experiments and they are all reported in Figure 1.
The ML inference framework was implemented in R. Supple-
mental material containing all the necessary scripts for repro-
ducing the simulations and results are available at Figshare:
https://doi.org/10.25386/genetics.7616171.

Results

Cage evolution experiments

We created a transgenic D. melanogaster line, based on the
Canton-S strain, in which we inserted a construct expressing
a dsRed fluorescent protein into the yellow gene. This inser-
tion effectively disrupts the gene, producing the characteris-
tic yellow phenotype, which is recessive. At the same time,
expression of the dsRed protein produces an easily identifi-
able, codominant phenotype characterized by red fluores-
cence in the eyes, abdomen, and ocelli, though only the
latter two could be observed in Canton-S flies due to eye
pigmentation.

We will refer to the allele with the inserted construct as y,
andwewill denote thewild-type allele asþ. Because yellow is
located on the X chromosome, males of genotype y are
expected to show both the yellow (body) and red (eye) phe-
notypes, whereas þmales are expected to show neither phe-
notype. In females, yy homozygotes are expected to show
both the yellow and red phenotypes, yþ heterozygotes are
expected to show only the red phenotype, and þþ homozy-
gotes are expected to show neither phenotype. Our system
thereby allows us to unambiguously distinguish genotypes at
the yellow locus from phenotypic assays of individual flies.

We evolved five laboratory cage populations, each initial-
ized from a mixture of wild-type Canton-S flies and our
transgenic yellow flies. Genotype frequencies at the yellow
locus were then tracked over several generations. Our first
two cages were evolved over six (cage 1) and five (cage 2)
generations, starting with initial y allele frequencies of
�70%. Three additional cages were each evolved for just a
single generation with starting frequencies of the y allele of
�20% for cage 3, �50% for cage 4, and �80% for cage 5.
Census population sizes in each cage comprised between sev-
eral hundred and several thousand flies per generation.

Figure 1 shows the observed genotype frequency trajecto-
ries, and changes in male and female population size, over
time. Note that although we phenotyped the full adult census
population, many of these flies may not have actually repro-
duced. The frequency of the y allele decreased systematically
in all five cages, confirming that yellow disruption is likely
associated with a substantial fitness cost. In cage 1, for ex-
ample, the y allele decreased from�70 to�10% over just six
generations, and a similar rate of decline was observed in the
other cages as well.

Census population sizes fluctuated noticeably in our cages.
However,wedonotbelieve that thiswasdue to selectionat the
yellow locus, but rather reflected unrelated factors, such as
larval competition and variance in food preparation. We also
usually observed a biased sex ratio of phenotyped flies since
females had higher mortality from laying eggs in the crowded
food bottles, while males approached the food bottles less
often.

Evolutionary model

To estimate thefitness costs associatedwith yellowdisruption,
we will first establish an evolutionary model for allele fre-
quency dynamics that incorporates three specific components
of fitness: viability, fecundity, and mating success. We specif-
ically consider an X-linked locus with two segregating alleles:
wild-type ðþÞ and yellow (y). The y allele produces the yel-
low phenotype that has lower fitness than the wild-type phe-
notype. These fitness costs could be due to reduced viability,
fecundity, and/or mating success in individuals with the yel-
low phenotype compared to wild-type individuals. In all
cases, we assume that the y allele is strictly recessive, so
that wild-type and yþ heterozygous females have the same
fitness. We will denote the counts of individuals observed
in the present generation t, partitioned by genotype, as
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Ny;Nþ;Nyy;Nyþ;Nþþ. Viability specifies the probability that a
zygote survives to reproductive age, which we assume de-
pends only on the phenotype and sex of the individual. Spe-
cifically, we define vm to be the relative viability of yellow vs.
wild-type males, and vf to be the relative viability of yellow
vs. wild-type females

vðy♂Þ
vðþ♂Þ ¼ vm

vðy♀Þ
vðþ♀Þ ¼ vf

(1)

Here, þ♂ describes wild-type males, y♂ describes yellow
males, þ♀ describes wild-type females, and y♂ describes
yellow-phenotype females.

Fecundity specifies the reproductive success of a mating
pair, as measured by the expected number of offspring. In
contrast toviability,which isa functionofan individual zygote,
fecundity is a function of a mother–father pair. In our model,
we assume that fecundities are defined by the following mat-

ing table, specifying the relative fecundities of matings in-
volving parents of different phenotypes.

For our sexual selection model, we assume a scenario of
femalemate choice in which females will choosemates with a
potential preference based on phenotype. We define the
probabilities that a female of a particular phenotype chooses
a male of a particular phenotype to be

Pðþ♂j þ ♀Þ ¼ Nþ=ðNþ þ aNyÞ
Pðy♂j þ♀Þ ¼ aNy=ðNþ þ aNyÞ
Pðþ♂jy♀Þ ¼ Nþ=ðNþ þ bNyÞ
Pðy♂jy♀Þ ¼ bNy=ðNþ þ bNyÞ

(2)

The parameters a and b specify the relative reduction
in mating success of yellow males compared to wild-
type males in mating with wild-type or yellow females,
respectively.

Biologically there is no reason to assume that yellow-
phenotype males or females would actually have higher
viability, fecundity, or mating success than their wild-type
counterparts. Thus, we will assume that all selection param-
eters are constrained within 0# vm; vf ;vm;vf ;vb;a;b#1,
which will also help prevent overfitting in our ML inference
approach. Finally, we assume discrete generations and ran-
dom segregation of alleles within gametes due to a lack of any
known mechanism for biased inheritance of y. Figure 2 illus-
trates the life cycle in this evolutionary model over the course
of one generation, depicting where the different types of
selection operate.

With these definitions at hand, we can calculate the
expected genotype frequencies in generation t þ 1 as a func-
tion of their frequencies in generation t and the selection
parameters. At our X-linked locus, male zygotes always

Figure 1 Population sizes and genotype frequencies in our five cage experiments. Note that we define genotype frequencies relatively among males
and relatively among females.
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inherit their X chromosomes from their mothers, while females
inherit one copy from each parent. When assuming absence
of any selection ðvm ¼ vf ¼ vm ¼ vf ¼ vb ¼ a ¼ b ¼ 1Þ, the
expected genotype frequencies in the next generation will
then be given by

py ¼ c1ðNyy þ Nyþ=2Þ
pþ ¼ c1ðNþþ þ Nyþ=2Þ
pyy ¼ c2NyðNyy þ Nyþ=2Þ
pyþ ¼ c2½NyðNþþ þ Nyþ=2Þ þ NþðNyy þ Nyþ=2Þ�
pþþ ¼ c2NþðNþþ þ Nyþ=2Þ

(3)

Here py and pþ denote the expected relative frequencies of y
and þ genotypes among males, and pyy, pyþ, and pþþ denote
the expected relative frequencies of yy, yþ, and þþ geno-
types among females. The normalization coefficients c1
and c2 are defined by the conditions that gamete fre-
quencies in males and females each have to sum to one:
py þ pþ ¼ pyy þ pyþ þ pþþ ¼ 1. Note that we do not use ab-
solute genotype frequencies in the population, but only rela-
tive frequencies in males and females. This will later allow us
to factorize likelihood calculations into male and female
likelihoods.

Viability selection is straightforward to incorporate
into this framework. We can simply interpret the genotype
frequencies derived in (3) as the expected frequencies of
zygotes, which then just need to be multiplied by the
corresponding viability coefficients (and renormalized).
To incorporate fecundity and mate choice, we also have
to account for the probabilities that the matings that can
produce the respective zygote genotypes actually occur,

and then weigh them by their fecundities. Altogether, this
yields

py ¼ c1vmð½vbPðy♂jy♀Þ þ vf Pðþ♂jy♀Þ�Nyy

þ ½vmPðy♂j þ♀Þ þ Pðþ♂j þ♀Þ�Nyþ=2Þ
pþ ¼ c1½vmPðy♂j þ ♀ÞðNþþ þ Nyþ=2Þ

þ Pðþ♂j þ ♀ÞðNþþ þ Nyþ=2Þ�
pyy ¼ c2vf ½vbPðy♂jy♀ÞNyy þ vmPðy♂j þ ♀ÞNyþ=2�
pyþ ¼ c2½vf Pðþ♂jy♀ÞNyy þ vmPðy♂j þ ♀ÞðNþþ þ Nyþ=2Þ

þ Pðþ♂j þ♀ÞNyþ=2�
pþþ ¼ c2Pðþ♂j þ ♀ÞðNþþ þ Nyþ=2Þ (4)

The coefficients c1 and c2 are again defined by normalization.
Note that although this model is specific for an X-linked gene,
it is in fact easy to extend to other inheritance patterns, for
example an autosomal locus (see Supplemental Material,
Supplemental Results). The general principle is always the
same. To calculate the expected frequency of a given geno-
type, we first have to sum over all matings that can produce
this genotype, weight each by its respective mating probabil-
ity and expected fecundity of the mating pair, then multiply
all genotypes by their respective viabilities, and finally nor-
malize all genotype frequencies. Other selection scenarios,
such as different dominance effects, could be easily imple-
mented as well by changing the genotypes to which fitness
parameters are applied.

ML inference framework

The model developed in the previous section allows us to
calculate changes in genotype frequencies when stochastic
fluctuations due to processes such as random genetic drift can
be neglected. To extend this model to more realistic popula-
tions, we require a probabilistic model that incorporates such
fluctuations. In principle, the source of this stochasticity could
be explicit in our model. For example, we could describe
stochasticity in the mating process by randomly drawing
males with replacement. Stochasticity in fecundity could be
modeledbydrawingoffspringnumbers fromsomeprobability
distribution. Finally, stochasticity at the level of viability could
be implemented as a Bernoulli process.

However, such a model would require a very detailed
understanding of each step of the life cycle in our cages,which
may even change with the environment and population den-
sity. Since our primary goal is the inference of the selection
parameters, rather than the causes of drift, wewill instead use
a simple Wright–Fisher-type model to describe the fluctua-
tions in genotype frequencies, as has been employed in many
previous methods (Bollback et al. 2008; Mathieson and
McVean 2013; Terhorst et al. 2015; Schraiber et al. 2016).
Specifically, we assume that genotypes in generation t þ 1 are
sampled randomly from a multinomial probability distribu-
tion, specified by the expected genotype frequencies from
Equation 5 and an effective population size parameter ðNeÞ.

Figure 2 Illustration of the different stages of the life cycle during one
generation in our model.
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This Ne parameter approximates the aggregate effects of ran-
dom genetic drift in the model and can be tuned such that
frequency fluctuations in the model become similar in mag-
nitude to those in the real population. Note that the Ne pa-
rameter could, in principle, be allowed to change across
generations, for instance becoming a function of census pop-
ulation size and/or sex ratio. We will discuss these complex-
ities in more detail below.

There is an important complication when it comes to
calculating probabilities in this model. In a Wright–Fisher
population of effective size Ne, the probability of observing
a given vector ðN1;⋯;NdÞ of counts of all d possible geno-
types is given by a multinomial distribution, which is prop-
erly defined only when

P​ d
i¼1Ni ¼ Ne. This condition will

almost certainly be violated in our cages, as we expect
census sizes (and thus also sample sizes, which are com-
prised by all adults in a cage) to be much larger than Ne due
to a variety of factors, such as a higher variance in offspring
numbers in the fly populations compared to a Wright–
Fisher population.

To address this problem, we will employ a continuous
approximation for the multinomial distribution, where geno-
type counts are replaced by genotype frequencies and the
discrete multinomial probabilities are replaced by a multidi-
mensional probability density.We define this density by using
the g function Gðx þ 1Þ ¼ x! as a natural continuous exten-
sion for the factorials in the multinomial distribution. Specif-
ically, consider a diploid Wright–Fisher model with effective
population size Ne and d possible genotypes, where
p ¼ ðp1;⋯; pdÞ specifies their expected frequencies in gener-
ation t þ 1. The probability density of observing a given set of
genotype frequencies xtþ1 ¼ ðN1=N;⋯;Nd=NÞ in generation
t þ 1 is then defined by

rðxtþ1jp;NeÞ ¼ cGðNe þ 1Þ
Yd

i¼1

pxiNe
i

GðxiNe þ 1Þ (5)

The constant c is to ensure normalization and will be dis-
cussed below. In this framework, the probability of observing
genotype frequencies that fall inside a given area V of the d-
dimensional frequency space is obtained by integrating the
probability density over this area: Prðx 2 VÞ ¼ R

V

rðxÞdx.
To allow for the possibility of biased sex ratios in our

model while avoiding specific assumptions about what
caused these biases in our cages, we will further factorize
the overall probability density into the individual probabil-
ities of observing the male and female genotype counts
independently

rðxtþ1Þ ¼ r
�
xy; xþjpy; pþ;Nm

�

3 r
�
xyy; xyþ; xþþjpyy; pyþ; pþþ;Nf

� (6)

Here, xy and xþ specify the observed genotype frequencies in
generation t þ 1 in males, and xyy, xyþ, and xþþ specify the
observed frequencies in females.

The normalization coefficients cm and cf for the male and
female probability densities are defined by the requirement
that the integral of r over the d-dimensional standard simplex
(defined by

P
i
xi ¼ 1) has to yield a value of 1. Unfortunately,

we are not aware of any closed-form analytic expressions for
this integral, but we can provide a workable approximation
by discrete partitioning. For the male density, we have
d ¼ 2 and can chose xy as the free variable, while
xþ ¼ 12 xy. We can then model the area under r as the
sum of Nm 2 1 rectangles of width 1=Nm and height defined
by the value of r at the rectangles’ midpoints,
xy ¼ 1=Nm; 2=Nm; . . . ; ðNm 21Þ=Nm, plus two rectangles of
width 1=ð2NmÞ and height, rð0; 1Þ and rð1; 0Þ, at the left
and right boundaries of the frequency space, respectively.
Setting this sum to 1 then yields

cm ¼ Nm

12
P

ip
Nm
i

.
2

(7)

This approach can be directly extended to the female density,
where d ¼ 3. Here, we can chose xyy and xþþ as the free
parameters, while xyþ ¼ 12 xyy 2 xþþ. The integration of r
over the simplex can then be approximated as the sum of the
volume of prisms, estimated over the triangle bounded by the
lines xyy ¼ 0, xþþ ¼ 0, and xyy þ xþþ ¼ 1, which yields

cf ¼
N2
f

1þP
i

�
pNf

i

.
62 ð12piÞNf

.
2
� (8)

Note that under these approximations, rðxÞ is technically no
longer a proper probability density, as integration over the
simplex will not always yield a value of exactly 1. However,
these deviations become noticeable only for very small pop-
ulation sizes, where the applicability of the Wright–Fisher
model becomes questionable in general. Our simulations be-
low confirm that this discrete approximation works well in
practice.

ThefactorizationemployedinEquation5providesaveryflexible
framework for defining effective population size, which could be
assumed to differ betweenmales and females, or could vary based
on the census population size. For now, we want to assume the
simplestmodelofaconstanteffectivepopulationsizewithequalsex
ratio,whilemore sophisticated definitionswill be discussed later in
the manuscript. We therefore set

Nm ¼ Nf ¼ Ne=2 (9)

With these definitions in place, we can formulate the log-
likelihood density function for the parameter vector
u ¼ fNe; vm; vf ;vm;vf ;vb;a;bg, given the vectors of ob-
served genotype counts in generations t and t þ 1 of a pop-
ulation cage. Multiplying these individual log-likelihoods
across all generations t ¼ 0; 1⋯; n in an experiment (i.e.,
assuming independence across generations) then yields the
log-likelihood density function
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lnLðuÞ ¼
Xn

t¼1

lnrðxtjuÞ (10)

We can easily extend this approach across multiple cages by
summing the log-likelihoods of the individual cages. The
resulting log-likelihood density function can then be used
for inference of ML estimates (MLEs) of the parameter values
and their C.I.s.

Several aspects of the above approach are worth further
mention. First, Ne has now become just another parameter of
the model and can thus be inferred the same way as we do

with the other parameters. This way, Ne can also take on
continuous values in our model. Second, our ML inference
approach is very general and could be easily applied to other
evolutionary models, so long as the model provides expected
values for genotype frequencies given their frequencies in the
previous generation. Finally, we want to acknowledge that
we have not explicitly incorporated sampling variance into
our framework. This is because our genotype frequency esti-
mates are based on counting all of the adults present in a
cage. While some sampling noise due to counting, phenotyp-
ing errors, or escaped fliesmay of course still have occurred in
any given generation, we expect that the contribution of such

Figure 3 Power analysis of the
maximum likelihood (ML) infer-
ence method. (A) Simulated ge-
notype frequency trajectories
under different selection scenar-
ios in a deterministic model with-
out drift: (i) sexual selection
only (a ¼ 0:2;b ¼ 0:6; vm¼ vf ¼
vm ¼ vf ¼ 1Þ; (ii) viability selec-
tion only ðvm ¼ 0:4; vf ¼ 0:6;
vm ¼ vf ¼ vb ¼ a ¼ b ¼ 1Þ;
and (iii) fecundity selection only
ðvm ¼ 0:3;vf ¼ 0:9; vb ¼ vmvf ;

vm ¼ vf ¼ a ¼ b ¼ 1Þ. Popula-
tions were started with a y allele
frequency of 70%, equally in ma-
les and females. Only homozygous
females were present in the start-
ing generation. Selection parame-
ters were chosen so that all three
scenarios yielded similar y allele
frequency ð� 6%Þ at the end of
the run. (B) Accuracy of our infer-
ence framework for the three se-
lection scenarios simulated in (A).
For each scenario, 1000 simulation
runs were performed in popula-
tions of 2000 individuals with
Ne ¼ 200. In each such run, the
parameter ML estimates (MLEs)
were then inferred for the given
model, while the other selection
parameters were kept fixed at a
value of 1. The table shows the
mean values and SDs of these pa-
rameter MLEs for the three scenar-
ios. (C) Selection thresholds below
which the inference method can
reject a value of 1 for a given se-
lection parameter. Simulations
were performed as in (B) but vary-
ing all selection parameters over a
grid. For each grid point, 1000 sim-
ulations were run. Lines show the
region in which the parameter can
be statistically distinguished from a
value of 1 with 95% confidence in
95% of simulations. Solid lines

show the horizontal axis parameter and dashed lines show the vertical axis parameter. The different colors indicate different lengths of the experiment
(5, 10, or 20 generations). (D) The heatmaps show the average Euclidean distance between pairs of inferred parameter MLEs and simulated values.
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factors to variance in genotype frequencies should generally
be negligible compared to the contribution due to drift. This
is also supported by the fact that inferred effective population
sizes are typically an order of magnitude smaller than the
census sizes of our cages (and hence sample sizes).

Power evaluation

Even when combined over all five cages, the genotype trajec-
tories in our experiments comprise a total of only 14 genera-
tion transitions. In light of such limited data, can we still
expect our ML inference method to have sufficient power to
infer the different parameters of our model? To explore this
question and also provide a general proof-of-principle of our
inference framework, we tested it on simulated data.

We first wanted to assess whether there are apparent
differences in genotype frequency trajectories between selec-
tion scenarios where fitness costs of an X-linked allele are
either due to reduced mating success, viability, or fecundity.
Figure 3A shows the outcomes of three simulations in which
we modeled frequency trajectories over 10 generations in a
cage under these three different selection scenarios. The se-
lection strength in each scenario was tuned to roughly con-
form with the observed decay rate of y allele frequencies in
our experimental cages, and these simulations were runwith-
out drift (in the limit of “infinite” Ne). For simplicity, we fur-
ther assumed that vb ¼ vmvf for the fecundity scenario. The
simulations indeed demonstrate clear differences in the fre-
quency trajectories between the three scenarios, suggesting
that different fitness components could in principle be disen-
tangled. While these differences are most pronounced in the
early generations, where frequency changes are the largest,
they also extend throughout the run, as can be seen in the
different frequency ratios of y males to yy females.

We next applied our ML inference method to these three
selection scenarios, but this time simulating a Wight–Fisher
model with drift ðNe ¼ 200Þ. Figure 3B demonstrates that our
approach can successfully infer the individual model param-
eters from a single 10-generation run in these simulated ex-
periments. When averaged over many simulation runs, MLEs
for the selection parameters converge to the true values, with
SD among runs being on the order of 10215% of the param-
eter values. However, the Ne estimates inferred by our ap-

proach were consistently higher than the true values. This
is likely due to the fact that, in any single experiment, drift
alone should already result in an upward or downward shift
in the y allele frequency that our method presumably mis-
takes for “additional” selection, thereby underestimating the
true amount of drift. Consider a completely neutral scenario,
for instance. In this case, our method would still presumably
infer some positive or negative selection in any given run that
ended at an allele frequency different from the starting fre-
quency. This would lead to a lower inferred level of drift, even
though the direction of selection would be random and av-
erage out over many runs.

The simulations shown in Figure 3, A and B all involved
rather strong fitness costs. To test how inference power de-
pends on the strength of selection, we systematically varied
the two selection parameters in each of the three scenarios, as
well as the duration of the experiment. We first wanted to
know the threshold for each parameter where our method
can reject a value of 1 with 95% confidence in 95% of simu-
lations. Figure 3C shows that even for a short experiment of
only five generations, our approach can reliably detect selec-
tion as long as individual fitness parameters are �0.6 or
smaller (i.e., fitness costs are 40% or larger for the particular
parameter). Increasing the duration of the experiment to
10 or 20 generations raises these thresholds.

Wenext studied the accuracy of the parameterMLEs across
the parameter space in the three selection models. Figure 3D
shows that relative errors are typically smaller than 15% in
the test scenarios when run for 10 generations. Note that
although each selection scenario has a male and female se-
lection parameter, inference power is asymmetrical for them.
For the fecundity and viability scenarios, this is due to the fact
that we are considering an X-linked locus with a recessive
phenotype. For the sexual selection scenario, there are addi-
tional systematic differences due to the fact that females are
the choosy sex in our model.

So far, we have only tested our inferencemethod under the
assumption that we already knowwhich type of selection has
acted (fecundity, viability, or sexual selection), validating that
the method can reliably infer the respective selection param-
eters in this case. But can it also distinguish the different types

Figure 4 Power of the inference
method to distinguish the three dif-
ferent types of selection. Simula-
tions were run as in Figure 3, C
and D. Parameter maximum likeli-
hood estimates were then obtained
for each run using the three individ-
ual selection inference models. For
each grid point, the heatmaps show
the fraction of simulation runs in
which the correct inference model
yielded the highest maximum log-
likelihood value among the three
models.
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of selection from each other? To test this, we applied our
method to each of the three selection scenarios, using either
thecorrect inferencemodelormodels inwhichadifferent type
of selection was inferred. This can be easily implemented in
our framework by fixing specific selection parameters. For
example, to devise a sexual-selection-only inference model,
the a and b parameters would be allowed to vary, while all
other selection parameters would be set to a value of 1.

Figure 4 shows the power of our ML inference method to
identify the correct selection type among the three selection
scenarios. Specifically, for each parameter setting, we mea-
sured the fraction of simulations in which the selection in-
ference models with the correct type yielded a higher
maximum log-likelihood value than either of the incorrect
types. Figure S1 further shows how these results subdivide
into individual two-way comparisons between the correct
model and only one of the incorrect models. These results
demonstrate that our ML inference method has surprisingly
good power in identifying the correct selection type, with
power generally improving as selection strength increases.
However, we also observe distinct patterns for the three se-
lection scenarios in which it becomes difficult to distinguish
the correct model. In a sexual selection simulation where a

and b have similar values, we have little power to distinguish
the sexual selection model from the fecundity selection
model with vf ¼ 1 (Figure S1). This is because when
a ¼ b, the sexual selection model is mathematically identical
to the fecundity selection model with vf ¼ 1. Similarly, we
observe that in a fecundity selection simulation where
vf � 1, the power to infer the correct selection type is actu-
ally inferior to a random guess (Figure S1), presumably due
to a better capacity of the sexual selection inference model to
account for stochastic variation in this situation. Finally, we
note that viability selection can almost always be correctly
distinguished from the two other types in our test scenarios
unless selection is very weak.

Ourevolutionexperiments trackedanX-linked locuswitha
recessive phenotype. Consequently, the inference method we
developed focuses on such a scenario. However, there are

some peculiarities that distinguish evolutionary dynamics at
an X-linked locus from the more conventional case of an
autosomal locus. For example, at an X-linked locus, it will
take longer for the population to approach Hardy–Weinberg
equilibrium when it started from a state of disequilibrium, as
was the case in our experiments. This raises the question of
whether the power of our method to distinguish selection
types and infer selection parameters may in part be due to
such peculiarities. To explore this question, we extended our
inference method to an autosomal locus and verified that it
still retains power in this more general case, although distin-
guishing between male and female selection parameters
becomes more difficult. A detailed study of the autosomal
model is provided in the Supplemental Results.

Parameter estimation in cage experiments and
model comparison

We applied our ML inference method to the combined data
from our five cage populations by adding the individual log-
likelihoods of eachof the 14generational transitions observed
in our experiments. Table 1 shows the resulting parameter
MLEs and maximum log-likelihood values for several differ-
ent inference models.

We first tested our full inferencemodel with all three types
of selection possible (eight free parameters total, including
Ne). The resulting parameter MLEs for this model suggest
that all three types of selection were indeed acting in the
cages, as indicated by the fact that at least one parameter
for each type of selection was inferred to be different from
one. However, we suspected that there could be substantial
overfitting in this model, given the rather large number of
parameters for the amount of data available. Furthermore,
various parameters could be intertwined with each other and
difficult to disentangle in practice. For example, it should
generally be possible to approximate many scenarios of pref-
erential mate choice by appropriately tuning a model with
only fecundity selection, especially since the latter has more
free parameters when we drop the assumption that
vb ¼ vmvf , but let vb be another free parameter.

Table 1 Parameter MLEs and model comparison

Model
description N̂e v̂m v̂f v̂m v̂f v̂b â b̂ lnL̂ P AICc

Full model 165 0.84 0.75 0.92 0.95 1.00 0.07 1.00 79.4 8 2114
No sexual sel. 103 0.98 1.00 0.10 0.40 0.29 1* 1* 69.6 6 2115
No viability sel. 154 1* 1* 0.77 0.86 0.73 0.09 0.98 77.9 6 2132
No fecundity sel. 165 0.83 0.77 1* 1* 1* 0.06 1.00 79.4 5 2141
Sexual sel. only 134 1* 1* 1* 1* 1* 0.03 0.69 74.9 3 2141
Viability sel. only 16 0.79 0.56 1* 1* 1* 1* 1* 32.0 3 256
Fecundity sel. only 103 1* 1* 0.10 0.39 0.29 1* 1* 69.6 4 2127
Simplistic model 32 1* 1* 0.49 ¼ vm ¼ v2

m 1* 1* 44.0 2 283
Minimal model 1 164 0.81 ¼ vm 1* 1* 1* 0.06 1* 79.2 3 2150
Minimal model 2 155 1* 1* 0.86 ¼ vm ¼ v2

m 0.09 1* 77.9 3 2147

Each row shows the parameter maximum likelihood estimates and associated maximum log-likelihood values when estimated from the combined data across all cages (1–5).
An entry of 1* indicates that the parameter was fixed at a value of 1 in the particular inference model. “=” indicates that the value of a parameter is fixed in relation to
another. P denotes the number of free parameters of the model, and AICc specifies its corrected Akaike information criterion value, AICc ¼ 2p2 2lnL̂þ
ð2p2 þ 2pÞ=ðn2 p2 1Þ where n ¼ 14 is the sample size. Smaller AICc values indicate better support for the model. sel., selection.
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To assess which fitness components are indeed most es-
sential to incorporate to accurately describe the genotype
dynamics observed in our cages, we tested several inference
models, systematically reducing model complexity. The qual-
ity of these models was then compared by calculating the
correctedAkaike informationcriterion (AICc)values (Hurvich
et al. 1989; Akaike 1998), which provide an estimator for the
goodness-of-fit of a given model, while also penalizing an
increase in the number of model parameters. Although the
correction term is strictly accurate only for linear models, it
serves as an adequate approximation for more complex sce-
narios in most cases (Hurvich et al. 1989). Note that in con-
trast to log-likelihood values where higher values indicate a
better-fitting model, a lower value indicates a better-fitting
model for AICc values.

We first evaluated inference models in which one type of
selection was completely eliminated (by setting all parame-
tersdescribing that component toavalueof1). In this case, the
largest reduction in maximum log-likelihood was observed
when sexual selection was excluded. All of these models
yielded better AICc values than the full model because of
their reduced number of parameters.

We next tested models with only one type of selection
acting. Consistent with the above result, we found that a
model with only sexual selection achieved a highermaximum
log-likelihood compared to models with only viability or only
fecundity selection, and theAICcvalueof thismodelwasagain
better than the full model. The model with only viability
selection was the least-supported model we tested overall.

A simplistic model with only a single fecundity parameter,
vm ¼ vf , assumed to be equal in males and females, and
multiplicative ðvb ¼ vmvf Þ, also produced a very poor fit to
the observed data, emphasizing the need for more complex
models for understanding the fitness costs of the yellow
phenotype.

Finally, we sought to identify a minimal model of low
complexity, based on a limited number of biological assump-
tions, which can still describe the observed dynamics reason-
ably well. Motivated by the observation that the b parameter
was often estimated to be one in the previously studied in-

ference models, we assumed for this minimal model that
sexual selection acts only by lowering the mating success of
yellow-phenotype males when wild-type females choose
their mate. In addition, we assumed that yellow-phenotype
individuals have either reduced viability (minimal model 1)
or reduced fecundity (minimal model 2), with equal costs
between the sexes and multiplicative costs in the case of
fecundity. Both of these minimal models have only three free
parameters (including Ne), yet yielded better AICc values
than any of the other models. In fact, our minimal model
1 yielded the best AICc value overall, suggesting that the data
can be explained well with this simple model, in which wild-
type females show severe mating bias against males of yellow
phenotype ðâ ¼ 0:06Þ and both sexes experience a modest
reduction in viability when having a yellow phenotype
ðv̂m ¼ v̂f ¼ 0:81Þ. However, note that the inclusion of prefer-
ential mate choice is crucial in this model, given that the
model with only viability selection produced the worst fit
among all models tested.

One key advantage of ML-based approaches is that confi-
dence intervals of parameter estimates can be easily calcu-
lated by likelihood ratio tests. Figure 5A demonstrates this for
the effective population size parameter Ne in our full model,
which we inferred to be Ne ¼ 165 with a 95% confidence
intervals of �1052 245, or �5–12% of the census popula-
tion size. This estimate is consistent with previous cage evo-
lution experiments in D. melanogaster, where Ne values were
observed ranging from 4–25% of population census sizes
(Malpica and Briscoe 1981; Mueller et al. 2013). Importantly,
in our framework, the inference parameter Ne will also de-
pend on the overall goodness-of-fit of the inference model. A
misspecified model would be expected to result in lower Ne

estimates, because the ML approach would have to assume
higher amounts of drift to explain the larger deviations be-
tween the predicted and observed frequency trajectories.

Figure 5, B and C show the likelihood surface plots and
confidence intervals for the selection parameters in each of
our two minimal models, demonstrating that our ML ap-
proach has good power in inferring these parameters. The
diagonal elongation of the contour areas in minimal model

Figure 5 Log-likelihood surfaces
and confidence intervals (A) The
log-likelihood curve of our full model
varying Ne, while keeping other pa-
rameters fixed at their maximum
likelihood estimate. The vertical
dashed lines indicate the maximum
likelihood estimate N̂e ¼ 167 and
the corresponding 95% C.I., esti-
mated from a likelihood ratio test
with one d.f. (B) The log-likelihood
surface for minimal model 1 with
the mating success parameter a, vi-
ability parameter vm ¼ vf , and fixed
N̂e. (C) The log-likelihood surface

for minimal model 2 with the mating success parameter a, fecundity parameter vm ¼ vf , vb ¼ vmvf , and fixed Ne. Darker colors correspond to
higher likelihoods. The three contour lines specify C.I.s according to a likelihood ratio test with two d.f.
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2 suggest that the two parameters are in fact partially de-
pendent on one another in this model.

Discussion

In this study, we developed an ML inference method for
estimating selection parameters from genotype frequency
time series. The key advancement of our approach over
existing methods is the ability to explicitly distinguish among
the different components that constitute fitness, including
mating success, fecundity, and viability. Our analysis indicates
that these different types of selection can indeed result in
distinct genotype frequency trajectories, which can be reliably
distinguished from each other using our inference method.

As a proof-of-principle,we applied ourmethod to study the
fitness costs associated with a disrupted yellow allele in D.
melanogaster, using data from cage evolution experiments.
Consistent with previous studies (Heisler 1984; Drapeau
et al. 2006), we found that yellow-phenotype males indeed
experience a large fitness cost compared to their wild-type
counterparts. Our method allowed us to further show that
this primarily results from wild-type females strongly prefer-
ring to mate with wild-type males over yellow males. Addi-
tionally, yellow-phenotype males and females may both
experience a moderate reduction in viability according to
our minimal model 1, which had the highest statistical sup-
port (Table 1).

Figure 6 shows that dissecting individual fitness compo-
nents is crucial for an accurate description of the genotype
frequency dynamics at the yellow locus. A simplistic model
that seeks to approximate the action of selection with a single
selection parameter would predict significantly different dy-
namics from those observed in the cages, whereas
our minimal model captures the true dynamics with substan-
tially higher accuracy.

Despite its generality, there are a number of important
limitations to our method. In contrast to many existing meth-
ods that are able to analyze sparse allele frequency data
obtained from distant time points, our method requires fre-
quency estimates over discrete, consecutive generations. This
requirement allowed us to establish a fully analytical model
based on the Wright–Fisher process, which does not rely on
simulations or numerical approximations of the transition
probabilities across multiple generations, as are typically in-

voked by other methods. However, it does likely limit the
applicability of our approach to experimental studies where
discrete generations can be enforced and data can be
obtained for each generation.

There are also potential issues regardingmodel complexity
andoverfitting in our inferencemethod.With its largenumber
of parameters, certain combinations of values can create very
similar outcomes, and these scenarios may only be distin-
guishable if therearemajor sex-baseddifferences between the
parameters. This became apparent when examining the
power to distinguish sexual vs. fecundity selection. Similarly,
even though both our minimal models suggested strong sex-
ual selection against yellow males, the first model also sug-
gested a viability cost for yellow-phenotype individuals while
the second suggested a fecundity cost. These results may
have been influenced by small sample sizes, so it remains
unclear whether or how the yellow phenotype induces a
modest reduction in viability, fecundity, or perhaps both. In
more complex models, such as when parameters are allowed
to vary with time, it will be even more difficult to distinguish
between different models that could produce similar geno-
type trajectories. Finally, it is not always clear how well the
evolutionary model actually resembles the mechanisms at
play in the real population. For example, in our implementa-
tion of a mate choice model, we assumed that females are the
choosy sex, yet males could potentially be choosy too in some
situations.

To calculate the probabilities of specific allele frequency
changes between consecutive generations, it was necessary to
incorporate an effective population size in our model. We
defined this parameter to be equal for males and females, and
constant across generations, yet other valid possibilities exist.
For example, the effective population size for each genera-
tional transition could be defined as a fixed percentage of the
census population size, using either the size in the previous
generation, the current generation, or some weighted com-
bination of both. This issue illustrates the shortcomings of the
Wright-Fisher model, where it is the population size in the
current generation that determines the amount of drift,
whereas in real populations we would often assume that
the size in the previous generation should be more relevant
because it determines the number of mating pairs. Another
possibility would be to treat male and female effective pop-
ulation sizes separately, which would also allow for a lower

Figure 6 Comparison of the ob-
served genotype trajectories in our
population cages (averaged over
cages 1 and 2) with the predicted
trajectories of the simplistic one-
parameter fecundity-selection-
only model ðvm ¼ vf ¼ 0:49Þ,
vb ¼ vmvf , and our minimal model
1 (vm ¼ vf ¼ 0:81, a ¼ 0:06), using
the parameter maximum likelihood
estimates inferred in Table 1. Simu-
lations were run without drift.
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effective proportion of males compared to females. In some
scenarios, these considerationsmay yield amodel that ismore
representative of the true level of stochasticity in each gen-
erational transition. However, in exploring these possibilities,
we found that for our experiments, none of the more sophis-
ticated definitions of Ne we tested yielded significantly better
likelihoods than the simple model of a single parameter that
is equal in males and females, and constant over time.

Disrupted yellow alleles are classic genetic markers in
Drosophila genetics and have long been known to affect the
mating success of male flies due to less effective courtship
displays. In particular, wing-extension display is known to be
defective in yellow males, resulting in their securing only
�10% of matings with a wild-type female when in one-to-
one competitions with wild-typemales (Drapeau et al. 2006),
which is broadly consistent with our results. Interestingly, in
long-term yellow-phenotype stocks, yellow females were
thought to have evolved to be more receptive to their male
counterparts (Bastock 1956), but it was later determined that
females with the yellow phenotype were themselves more
receptive to yellow males, irrespective of their genetic back-
ground (Dow 1976). Our study corroborates this result.
While it is possible that yellow females do show a modest
preference for wild-type males over yellow males, our study
lacked the statistical power to determine this.

Many evolutionary scenarios will still be well served by
classical models invoking only a single, fixed selection co-
efficient. However, certain scenarios will likely require more
detailed fitness models such as the one we have presented
here. Perhaps the primary application for such models in-
volves the spreadof selfishgenetic elements. Thepotential use
of engineered gene drives (Unckless et al. 2015; Champer
et al. 2016) is one such example, as it demands accurate
and detailed models for their performance in natural popu-
lations, which will likely have to be based on cage trials. For
instance, while an existing D. melanogaster gene drive
(Champer et al. 2017) that targeted the yellow gene would
not be able to spread, a multiplexed gRNA drive (Champer
et al. 2018) at this locus could be expected to spread in a
frequency-dependent fashion in either of ourminimal models
involving sexual selection, a feature not commonly associ-
atedwith such homing-type gene drives. Thus, determination
of individual fitness components is not only essential for un-
derstanding the spread of gene drives, but could potentially
inform their design as well.
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