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abstract: Epidemiological models for multihost pathogen systems
often classify individuals taxonomically and use species-specific pa-
rameter values, but in species-rich communities that approach may
require intractablymanyparameters. Trait-based epidemiologicalmod-
els offer a potential solution but have not accounted for within-species
trait variation or between-species trait overlap. Here we propose and
study trait-based models with host and vector communities repre-
sented as trait distributions without regard to species identity. To illus-
trate this approach, we develop susceptible-infectious-susceptiblemod-
els for disease spread in plant-pollinator networks with continuous trait
distributions. We model trait-dependent contact rates in two common
scenarios: nested networks and specialized plant-pollinator interac-
tions based on trait matching. We find that disease spread in plant-
pollinator networks is impacted the most by selective pollinators, uni-
versally attractive flowers, and cospecialized plant-pollinator pairs.
When extreme pollinator traits are rare, pollinators with common traits
are most important for disease spread, whereas when extreme flower
traits are rare, flowers with uncommon traits impact disease spread
the most. Greater nestedness and specialization both typically promote
disease persistence. Given recent pollinator declines caused in part by
pathogens, we discuss how trait-based models could inform conserva-
tion strategies forwild andmanaged pollinators. Furthermore, while we
have applied our model to pollinators and pathogens, its framework is
general and can be transferred to any kind of species interactions in any
community.

Keywords: infectious disease, model, nestedness, plant-pollinator net-
work, specialization, trait.

Introduction

Community ecologists have begun to make great strides in
understanding multispecies interactions through trait-based
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approaches, identifying key functional attributes of organ-
isms (size, shape, nutrient requirements, etc.) that are im-
portant for community structure and function (e.g., Hille-
brand and Matthiessen 2009; Allison 2012; Urban-Mead
2017). Consequently, there is a surge of interest in exploring
how an explicit consideration of traits can improve under-
standing of multihost pathogen transmission (Paull et al.
2012; Rudge et al. 2013; Streicker et al. 2013; Stutz et al.
2014; Han et al. 2015; Luis et al. 2015). At the same time,
disease spread models are often improved when species in-
teraction networks are considered (Otterstatter and Thom-
son 2007; Salathe et al. 2010; White et al. 2017). However,
the merging of trait-based approaches with network mod-
eling to understand multihost transmission across space
and time is in its infancy. Most studies investigating the im-
portance of traits have limited or no knowledge of contact
patterns among hosts (e.g., Rudge et al. 2013; Han et al.
2015; Luis et al. 2015). Furthermore, to our knowledge, no
theory has been developed to understand how traitsmay pre-
dict multihost pathogen transmission in networks of inter-
acting species.
A trait-based approach to modeling disease dynamics

may be advantageous for several reasons. First, a trait-based
approach can consider within-species variation, which can
be an important source of heterogeneity in disease trans-
mission, affecting susceptibility, contact rates with other hosts,
duration of infectiousness, andpathogen shedding rates (Per-
kins et al. 2003; Lloyd-Smith et al. 2008; Hudson et al. 2008;
Hawley and Altizer 2011; Strauss et al. 2018). Second, results
have the potential for across-community generality, due to
taxon independence and because traits can be linked to the
environment (e.g., Rudge et al. 2013). Thus, predictions across
multiple environmental contexts are facilitated (McGill
et al. 2006; Green et al. 2008; Webb et al. 2010; Strauss et al.
2018). Finally, a trait-based approach can drastically sim-
plify data analysis and modeling by reducing the number
of parameters needed (Dobson 2004). Relationships between
measurable traits andmodel parameters can be estimated for
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a subset of species spanning the range of candidate traits, and
epidemiological parameters for other species can then be im-
puted.

Here we use plant-pollinator networks to advance trait-
based modeling of multihost pathogen transmission. A
growing number of studies show that many pathogens are
shared between bee species (Goulson 2009; Cornman et al.
2012; Evison et al. 2012; Ravoet et al. 2014; Gamboa et al.
2015; McMahon et al. 2015). Furthermore, a broad literature
exists regarding the structure and function of plant-pollinator
networks (e.g., Bascompte et al. 2003; Memmott et al. 2004;
Lever et al. 2014). These studies consistently show that
nestedness and specialization in plant-pollinator networks
are common (Bascompte et al. 2003; Aizen et al. 2012; Bur-
kle et al. 2013), resulting in heterogeneity among potential
hosts in contact patterns at flowers. Thus, there is great op-
portunity for host community composition (Ruiz-Gonzalez
et al. 2012) and network architecture to alter pathogen trans-
mission dynamics. Althoughmore than 50 studies have doc-
umented the importance of traits such as nectar volume,
stigma length, and bee foraging duration for transmission
of plant pathogens at flowers, how bee and flower traits af-
fect transmission of pollinator pathogens is almost com-
pletely unexplored (McArt et al. 2014; Koch et al. 2017;
but see Adler et al. 2018). Considering that global pollinator
declines are caused in part by pathogens (Cameron et al.
2011; Goulson et al. 2015), further understanding of how
traits impact disease transmission among pollinators is
needed.

To develop our model, we use community-wide func-
tions in which model parameters are functions of individual-
level traits. We first propose a simple single-class model
(analogous to a single-species model) for pollinator-flower
pathogen transmission. We then consider pathogen trans-
mission in a community of multiple bees and flowers char-
acterized by trait values that vary continuously within and
across species, rather than positing a discrete set of species
where individuals within a species are identical in traits and
therefore in parameter values. The difference between these
two perspectives is illustrated by the two representations in
figure 1 of the distribution of corolla tube length, a flower
trait that affects foraging preferences and efficiency by
different-size pollinators (e.g.,Harder 1983;Miller-Struttmann
et al. 2015). While some species (such as Alliara) could be
characterized by a single value, many have wide and broadly
overlapping distributions. If epidemiological parameters re-
ally are primarily trait dependent (with species identity less
important), the distribution of trait values without regard to
species identity may be the most effective way to character-
ize a multispecies community.

To illustrate our proposed approach based on trait distri-
butions, we construct and study a model in which traits de-
fine the pattern of visitation within the community. We an-
alyze the model to identify which locations in the network
are most important for disease persistence (i.e., for making
the pathogen reproduction number R0 1 1) and for steady-
state disease prevalence in pollinators and to identify which
processes and parameters are most important. This is done
through sensitivity analysis of R0 and steady-state disease
prevalence, with respect to perturbations of parameters or
class abundances. We compare the results for two types
of interactions—nested interaction networks (Bascompte
and Jordano 2007) and specialized interactions based on
plant-pollinator trait matching—and for uniform versus
nonuniform trait distributions. In pollination networks,
nestedness refers to visitation patterns where all pollinators
visit certain flowers with universally attractive characteris-
tics, while a smaller subset of pollinators also visit flowers
that are less universally attractive. Specialization refers to
visitation patterns in which contact rates are greatest be-
tween bees and flowers with specific alignments of traits. Fi-
nally, because we are interested in how traits and relative
abundance jointly impact disease dynamics, we modeled
communities with both uniform and nonuniform trait dis-
tributions. Computer scripts to replicate our figures and
results have been deposited in the Dryad Digital Repository
(http://dx.doi.org/10.5061/dryad.730n045; Truitt et al. 2019).
Models

In all our models, a “class” refers to a group of individuals
with identical values of all parameters that affect their de-
mography and disease transmission. To introduce our as-
sumptions, we first present a model with one class each of
bees and flowers. We then develop the continuous trait dis-
tribution (CTD) model, where a class is defined by the spe-
cific value of a quantitative trait that can take any value in
an interval. For numerical solutions, the CTD model is ap-
proximated by a discrete multiclass model where individu-
als are binned into small subintervals and assigned the bin
midpoint as their trait value.
Single-Class Model

The model is intended to balance simplicity and biological
relevance. Figure 2A, 2B represents the model pictorially.
Individual bees and flowers are categorized as either sus-
ceptible, SB and SF, or infected with the focal pathogen, IB
and IF, without any latent period. The total population sizes
are thus NB p SB 1 IB for bees and NF p SF 1 IF for flow-
ers. An infected flower might be more accurately described
as a contaminated flower, as we assume that pathogen pres-
ence has no direct effect on the flower. All uninfected bees
are susceptible to pathogen transmission, and all infected
bees are equally infectious; for simplicity, we assume the
same for flowers. Homogeneity of bee susceptibility also
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may not be completely realistic (Retschnig et al. 2014), and
we are not aware of any evidence bearing on homogeneity
of bee infectiousness. However, these are beyond the scope
of this article.

NF is assumed to be constant on the time scale of the
model (no births or deaths), while bee population size changes
with constant birthrate b and constant per capita death rates
for susceptible bees, mS, and infected bees, mI (Michener 1974;
Winston 1987; Barrett and Harder 2007; Goulson 2009).
Flowers remain infected for very brief periods at our baseline
parameter values (0.5 day; table 1), and at any given moment
most flowers are uninfected. Allowing flowers in the model
to die and be replaced by new, uninfected flowers would there-
fore have little effect on disease outcomes.

Bees and flowers each have constant rates of recovery
from infection, g and z, respectively. We assume that bees
and flowers return to being susceptible on recovery, with
the same susceptibility to a repeat infection as all other
susceptibles. In bees, recovery is mediated by the host im-
mune response (Evans et al. 2006). In flowers, the time to
recovery is determined by the pathogen’s ability to survive
in the environment, involving factors such as solar radia-
tion and desiccation that vary among pathogens and envi-
ronments. Pathogen viability outside its host significantly
impacts transmission dynamics (Merikanto et al. 2012).
Finally, we assume that there is no direct bee-to-bee or

flower-to-flower transmission. Intracolony transmission oc-
curs in social bees (Naug 2008), but here we only consider
foraging bees where pathogens are transmitted in the envi-
ronment via infected flowers (i.e., transmission in plant-
pollinator networks).
To complete themodel, we need to specify the rates of in-

fection, which depend on the rates at which susceptible bees
visit infected flowers and infected bees visit susceptible
Veronica serpyllifolia Alliaria petiolata Brassica rapa Cerastium fontanum Ranunculus acris
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Figure 1: Distribution of corolla tube length for five common flowering plant species in three old-field communities in upstate New York in
2017. Top, boxplots for each species. Boxes extend from the 25th to 75th percentiles, and whiskers extend to the 5th and 95th percentiles.
Bottom, histogram of pooled values from all five species. This figure was produced by PlotTraitDistributions.R (computer scripts deposited in
the Dryad Digital Repository: https://dx.doi.org/10.5061/dryad.730n045; Truitt et al. 2019).
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flowers. We assume that bees visit flowers without regard to
their state of infection. Let hB denote the flower visitation
rate by an individual bee, susceptible or infected (flowers/
bee/day), and a the probability of bee-to-flower transmis-
sion when an infected bee visits an uninfected flower. In-
fected bees visit flowers at total rate hBIB, so each susceptible
flower is visited at rate hBIB=NF and infected with proba-
bility a on each visit. The rate of new flower infections is
therefore aSFhBIB=NF p a(NF 2 IF)hBIB=NF.

Similarly, let b be the probability of flower-to-bee patho-
gen transmission when a susceptible bee visits an infected
flower. Each susceptible bee has infectious contacts at rate
hBIF=NF, so new bee infections occur at total rate bSBhBIF=
NF. We therefore have the following differential equations
for susceptible and infected bees and infected flowers:

dSB
dt

p b1 gIB 2 bSBhB

IF
NF

2 mSSB, ð1aÞ

dIB
dt

p bSBhB

IF
NF

2 (mI 1 g)IB, ð1bÞ

dIF
dt

p a(NF 2 IF)hB

IB
NF

2 zIF: ð1cÞ

R0 for the Single-Class Model. Now we will consider the re-
production number, R0, defined as the number of secondary
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Figure 2: Summary of the model. A, B, Compartment diagram for the one-class susceptible-infectious-susceptible (SIS) model for flowers
and bees, respectively. C, D, Continuous trait distribution model: image and contour plots of contact rates in the continuous trait distribution
nestedness (n p 3) and specialization (j p 10) models, respectively. Warmer colors (yellows) indicate a greater frequency of visitation when
compared to cooler colors (blues). A vertical slice (such as the dashed red vertical line in C) represents the preferences of one bee class. In the
nestedness model, all bees prefer more attractive flowers, but more selective bees have a stronger preference. In the specialization model, bees
prefer flowers whose size (scaled corolla length) matches their size (scaled tongue length). Midsize bees can visit flowers larger or smaller than
themselves, but extreme-size bees can only visit less extreme flowers and so are more concentrated on those. Panels C and D were produced
by NetworkImages.R (computer scripts deposited in the Dryad Digital Repository: https://10.5061/dryad.730n045; Truitt et al. 2019).
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infectious cases resulting from a single initial infection in an
otherwise completely susceptible population (MacDonald
1952; Smith et al. 2012). Reproduction number R0 is a useful
characterization because a disease spreads if the number of
infected individuals increases froman initially low level, gen-
erally when R0 1 1.

Because there are two directions of transmission, we de-
fine two reproductive numbers. Let TF,B be the reproduction
number for bee-to-flower transmission and PB,F the repro-
duction number for flower-to-bee transmission. Generally,
the reproduction number is calculated as the product of the
mean duration of infection, with the rate of secondary in-
fections caused by one infected individual when all others
are susceptible. For bee-to-flower transmission,

TF,B p
ahB

g1 mI

ð2Þ

because an infected bee remains infected for (g1 mI)
21 time

units, on average, and contaminates hBa flowers per unit
time in a completely susceptible flower population. Similarly,
for flower-to-bee transmission,

PB,F p
b�N BhB

NFz
: ð3Þ

Here �N B p b=mS is the steady-state bee population when
the population is disease free, so �N BhB=NF is the rate of
bee visits to any one flower. A flower spends z21 time units
contaminated and infects b�N BhB=NF bees per unit time, in a
completely susceptible bee population.
Consequently, the bee-to-bee (and flower-to-flower) re-

production number is

R0 p PB,FTF,B p
ab�N Bh

2
B

NFz(g1 mI)
: ð4Þ

In some models, a disease can persist even when R0 ! 1 (Li
et al. 2011). Consequently, we ran simulations of our single-
class model to verify that the disease dies out when R0 ! 1
(script New Simulations.R). A thousand simulations for each
Table 1: Assumed (default) values of model parameters used for local sensitivity analysis and the ranges of values used for
global sensitivity analysis
Parameter
 Definition
 Units
 Value (Range)
 Reference
NF
 Total flower population
 Flowers or
inflorescences
2,204,970 (988,163–4,827,353)
 A. Iverson, unpublished data
N*
B
 Total bee population
 Individuals
 285 (190–380)
 Mandelik et al. 2012
(IB/NB)*
 Infection prevalence in bees
 Proportion
 .21 (.06–.32)
 Figueroa et al., forthcoming b

b
 Total birthrate of bees
 Bees/day
 9.1 (6.1–12.3)
 Set to match default NB
mS
 Death rate of susceptible bees
 Day21
 .032 (.02–.077)
 Michener 1974, 2007; Winston
1987; Goulson 2009
mI
 Death rate of infected bees
 Day21
 .051 (.032–.123)
 Paxton et al. 2007; Graystock
et al. 2013a, 2013b; Furst
et al. 2014; McMahon et al.
2016
hB
 Contact rate of one bee with
all flowers
Visits/bee/day
 4,032 (1,632–6,432)
 Couvillon et al. 2015
a
 Probability of transmission
from infected bee to
noncontaminated flower
Proportion
 .014 (.003–.07);
 Figueroa et al.,
forthcoming a
b
 Probability of transmission
from contaminated flower
to susceptible bee
Proportion
 Adjusted
 Adjusted for each network,
to match R0 estimated
from default IB/NB
g
 Bee rate of recovery from
infection
Day21
 .10 (.05–24)
 Winston 1987
z
 Flower rate of recovery
from infection
Day21
 2 (1–48)
 Figueroa et al., forthcoming a;
Kaya 1977
Note: Parameter values such as numbers of flowers and bees refer to a circular area of 100 m radius, which is a typical foraging radius of many species of wild
bees (Zurbuchen et al. 2010). Items marked with an asterisk are state variables not parameters but are included here because NB is used to estimate b, and
observed infection prevalence in bees IB=NB is the basis for estimating R0. The “reference” column states the main source of empirical information. Detailed
justifications for default values and ranges are in the section on parameter values. Honeybees have extreme outlier values for some parameters, and the pa-
rameter ranges do not include honeybees in those cases.
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condition (R0 ! 1, R0 1 1) were run by drawing parameters
other than b from independent uniform distributions on the
“global” parameter ranges (table 1; discussed below) and then
drawing b so that the R0 was uniformly distributed between
0.05 and 0.98 (for R0 ! 1) or uniformly distributed between
1.05 and 10 (for R0 1 1). In 100% of these simulations, when
R0 ! 1, the disease dies out, and when R0 1 1, the disease per-
sists. Figure S1 (figs. S1–S11 are available online) shows an ex-
ample.
1. As with h(y, x), this is a convenient shorthand for a precise statement
involving dx and dy.
Continuous Trait Distribution Model

The usual way of extending our single-class model (and
similar models) to a community of multiple pollinators and
flowers would be a multispecies model in which each spe-
cies is characterized by parameter values that are the same
for all individuals in the species. This would produce a sys-
tem of ordinary differential equations, with two equations
(susceptible and infected) for each pollinator and flower
species, with parameters including matrices characterizing
all pairwise contact and disease-transmission rates. How-
ever, if parameters affecting pathogen transmission are pri-
marily determined by individual traits, with species identity
of secondary importance, we can instead view the bee and
flower communities as a collection of individuals character-
ized by the frequency distribution of the relevant traits.

To introduce this approach, we specifically assume that
bees and flowers in the community are both characterized
by a measure of size (e.g., bee tongue length and flower co-
rolla length), denoted x and y for bees and flowers, respec-
tively, and scaled so that they range between 0 and 1. One
style of trait-based model (e.g., Dobson 2004) assigns a par-
ticular size to each bee species and flower species, and the
parameter values for each species are functions of its size;
species are distinct, but individuals within a species are as-
sumed to be homogeneous.

Here we propose an alternative in which traits (and, there-
fore, model parameters) are assumed to vary continuously
among individuals, while species identity is ignored.We are
not claiming that species identity is really irrelevant—bees
use many species-specific flower attributes in their foraging
decisions (see “Discussion”). However, we propose that the
gains from a great reduction in parameter count may more
than offset the loss of detail if a trait-centric model can cap-
ture themain features of cross-species interactions in a species-
rich community.

The community is described by the trait-frequency dis-
tributionsNB(x) andNF(y), such that

Ð x2
x1NB(x)dx is the num-

ber of bees with trait values between x1 and x2, and similarly
forNF(y). In some cases,NB andNF might have several modes
corresponding to typical values for a few common species,
but this is not necessarily the case (fig. 1). Here

Ð 1
0NB(x)dx

and
Ð 1
0NF(y)dy are total bee and flower numbers, respectively,
corresponding to the numbersNB andNF in the single-species
model.
The model has state variables SB(x, t), IB(x, t), SF(y, t), and

IF(y, t), where
Ð x2
x1SB(x, t)dx is the number of susceptible bees

with trait values in [x1, x2] at time t, and similarly for the
other state variables. Each bee and flower class (“class” now
referring to a set of individuals with the same trait value)
obeys the assumptions of the single-class model. To specify
transmission rates, let h(y, x) be the average rate of contacts
one class-x bee has with all flowers of class y combined (to
be precise, the average rate of contacts with all flowers of
classes y to y1 dy is h(y, x)dy1 o(dy) for dy ≪ 1). As in
the single-class model, infection rates can be written in
terms of h(y, x) and trait-dependent transmission probabil-
ities a(y, x) (bee to flower) and b(x, y) (flower to bee). Con-
tacts between susceptible class-x bees and infected class-y
flowers occur at total rate SB(x, t)h(y, x)IF(y, t)=NF(y, t).1Con-
tacts between infected class-x bees and susceptible class-y
flowers occur at total rate IB(x, t)h(y, x)SF(y, t)=NF(y, t). We
have SF(y, t) p NF(y)2 IF(y, t), whereNF(y) is constant over
time by assumption.
Allowing the disease to be transmitted between bees and

flowers of any class, we have (omitting for clarity the t argu-
ment in state variables)

∂SB(x)
∂t

p b(x)1 g(x)IB(x)

2 SB(x)
ð1
0
h(y, x)

IF(y)
NF(y)

b(x, y)

� �
dy2 mS(x)SB(x),

ð5aÞ
∂IB(x)
∂t

p SB(x)
ð1
0
h(y, x)

IF(y)
NF(y)

b(x, y)

� �
dy

2 (mI(x)1 g(x))IB(x),

ð5bÞ

∂IF(y)
∂t

p

 
NF(y)2 IF(y)

NF(y)

!ð1
0
h(y, x)IB(x)a(y, x)dx

2 z(y)IF(y):

ð5cÞ

These equations can be generalized to higher-dimensional
traits by modifying the integrals describing transmission to
integrals over multivariate trait distributions. It is also possi-
ble to include trait dynamics (e.g., if individuals are born
small and grow over time) by adding advection and/or diffu-
sion terms to the right-hand sides, as in theMcKendrick-von
Foerster equations for size-structured populations, but that is
beyond the scope of this article.
To solve the CTDmodel numerically, we used method of

lines, a general approach in which partial differential equa-
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tions are approximated by a system of ordinary differential
equations. For a general description, see, for example, Grif-
fiths (2016, sec. 3.8); for our model, method of lines works
as follows: The bee and flower trait ranges 0 ≤ x, y ≤ 1 are
divided into Q and K even subintervals, respectively, with
constant widths Dx p 1=Q and Dy p 1=K . Each continu-
ous trait distribution is represented by an evenly spaced set
of mesh points at the subinterval midpoints,

xq p
(q2 0:5)

Q
, q p 1, 2,⋯,Q;

yk p
(k2 0:5)

K
, k p 1, 2,⋯,K:

ð6Þ

Equations (5) are then approximated by a system of differ-
ential equations for each state variable at each of the mesh
points (i.e., SB(xq), IB(xq), IF(yk)), in which the integrals on
the right-hand side are approximated using the values at
the mesh points. For example, the differential equations for
SB(xq), q p 1, 2, ⋯ , Q are

dSB(xq)
dt

p b(xq)1 g(xq)IB(xq)

2 SB(xq)K21
XK
kp1

h(yk, xq)
IF(yk)
NF(yk)

b(xq, yk)

� �

2 mS(xq)SB(xq):

ð7Þ

We used the deSolve package (Soetaert et al. 2010) in R to
solve these differential equations numerically. In section S.2
of the appendix (supplemental appendix, available online), we
show that the method of lines solution to the CTD model (5)
corresponds to a model with multiple discrete species (eq. [S7])
in which some “species”-specific parameters depend on the
distances Dx and Dy between neighboring mesh points.

R0 for the CTD Model. For the CTD model, R0 is computed
as the spectral radius of the bee-to-bee next-generation op-
erator G, whose kernel G is given by the composition of the
bee-to-flower and flower-to-bee next-generation kernels.

The bee-to-flower kernel T gives the trait distribution of
flower infections resulting from a trait distribution of in-
fected bees when infected bees are infinitesimally rare and
flowers are all susceptible. We can calculate T as follows: A
bee of trait x remains infected for expected time 1=(g(x)1
mI(x)). Flowers in (y, y1 dy) are contacted at total rate
h(y, x)dy, with infection probability a(y, x). The expected
number of infections in (y, y1 dy) is, therefore, T(y, x)dy,
where

T(y, x) p
h(y, x)a(y, x)
g(x)1 mI(x)

: ð8Þ

The bee-to-flower next-generation operator is the map on
the space of real-valued integrable functions f on [0, 1],
f →
ð
T(y, x)f (x)dx:

The flower-to-bee operator P can be derived very similarly.
When there is a single infected flower with trait value y and
otherwise all flowers and bees are uninfected (and, therefore,
IB ≡ 0, SB(x) p �N B(x) p b(x)=mS(x) on the right-hand side
of eq. [5b]), IB(x) increases at rate �N B(x)h(y, x)b(x, y)=NF(y).
One such newly infected flower has this effect for expected
time 1=z(y), so we have

P(x, y) p
�N B(x)h(y, x)b(x, y)

NF(y)z(y)
p

b(x)h(y, x)b(x, y)
mS(x)NF(y)z(y)

: ð9Þ

The next-generation kernel G is the composition of P and T,

G(x*, x) p
ð
P(x*, y)T(y, x)dy: ð10Þ

The overall next-generation operator is the map

G : i(x) →
ð
G(x, u)i(u)du: ð11Þ

The reproductive number of the entire community is the
dominant eigenvalue (spectral radius) of G (Diekmann et al.
2009; Yang 2014). To implement (10) and (11) numerically,
we use midpoint-rule integration with the mesh points in
equation (6), as is usually done with integral projection
models (Ellner et al. 2016). Larger values of K and Q in-
crease the accuracy of the approximation. This numerical
approximation to the R0 for the CTD model is equal to
the R0 for the corresponding discrete multiclass model (see
sec. S.2.1).
As with the single-species model, we simulated themodel

to confirm that the disease dies out when R0 ! 1 and spreads
when R0 1 1, as in figure S2. One thousand simulations were
again run for each condition, using themethod of lines differ-
ential equations with Q p K p 4, drawing all parameters
from their global ranges, and then scaling the matrix of b
values by a constant to achieve uniform R0 distributions on
[0.05, 0.98] or [1.05, 10]. Again all simulations with R0 ! 1
led to the disease dying out, and all simulations with R0 1 1
led to the disease persisting. The same was true for 1,000 sim-
ulations with narrower ranges of R0 (0.9–0.98, 1.05–1.5).
Trait-Based Contact Rates

In general, bee and flower traits could affect attraction/
preference, pathogen viability, or pathogen acquisition (e.g.,
McArt et al. 2014; Adler et al. 2018). Attraction and preference
traits influence h, the rate of bee-flower contacts; viability-
related traits will affect g and z; and acquisition-related traits
will influence a and b.
In this article, we focus on trait-determined contact rates.

To do this, we assume that all other parameters are constant
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across bee classes and across flower classes (including, for
now, class abundance). We consider contact rates deter-
mined by a function h(y, x) that specifies the average rate
of contacts a bee with trait value xmakes with flowers with
trait value y. We will explore two types of contact network
structure, specialization and nestedness, defined below.

As a, b, b, mS, mI, g, NF, and z are constant by assumption
across bee and flower classes, it follows from equations (8)
and (9) that the next-generation operatorG is proportional
toHTH, whereH is the operator with kernel h(y, x) andHT

has kernel h(x, y). Therefore, R0 simplifies to

R0 p
ab�N B

NFz(mI 1 g)
l p

abb
NFz(mI 1 g)mS

l, ð12Þ

where l is the spectral radius ofHTH. We evaluate l numer-
ically as the dominant eigenvalue of HTH, where H is the
K#Q matrix with entries Hk,q p hk,q, the visitation rates
in the approximating discrete multiclass model (eq. [S3]).

Nestedness. In pollination networks, nestedness refers to vis-
itation patterns where all pollinators visit certain flowers
withuniversally attractive characteristics,while a smaller sub-
set of pollinators also visit flowers that are less universally
attractive. Nestedness is common in plant-pollinator net-
works (Bascompte and Jordano 2007). For example, Miller-
Struttmann et al. (2015) found that bumblebees with long
tongues selectively visited flowers with long corolla tubes,
while short-tongued bees were generalists with regard to
corolla tube length. In that community, flowers with long
corolla tubes are the most attractive, and long-tongued bees
are more selective than short-tongued bees.

Now we propose a model for trait-dependent nestedness.
Suppose that flowers have traits that impact their attractive-
ness to the bees in the community. Let y ∈ [0, 1] be this level
of attractiveness, where y p 1 is most attractive and y p 0
is least attractive. Additionally, we assume that bees are
characterized by how selective they are in choosing which
flowers to visit. Let x ∈ [0, 1] be this level of selectivity,
where x p 0 is least selective and x p 1 is most selective.
We then assume that contact rates are given by

h(y, x) p Cxe2nx(12y): ð13Þ
The parameter n determines the degree of nestedness; larger
values of n correspond to greater nestedness. Further, Cx is
the scalar value such that the total rate of contact for a
class-x bee with all flower classes satisfies

Ð 1
0h(y, x)dy p hB.

Thus, bee and flower trait values determine how bees divide
their visits among different flower classes but do not affect
the overall rate at which a bee visits flowers. Specifying the
model this way lets us vary network structure (degree of
nestedness) independent of the total rate of bee-flower con-
tacts. This model is illustrated in figure 2C.
Specialization. Specialization refers to visitation patterns in
which contact rates are highest between bees and flowers
with specific alignments of traits. Our specialization model
assumes that bees have a preferred flower trait, visiting flow-
ers with this trait value and similar flowers most frequently
and seldom visiting flowers with very different traits. In con-
trast to the nestedness framework, attractiveness is not uni-
versal: what one pollinator finds attractive, another does not.
Bees often specialize in particular flowers according to sev-
eral traits. For example, bees of the genus Rediviva with tarsi
hairs of various length, which are used to collect oil, special-
ize in flowers of the genus Diascia by floral spurs (Michener
2007). While pollinator specialization on flowers is better
studied, flower specialization on pollinators has also been
shown (Betts et al. 2015).
To model specialization based on matching between bee

and flower traits, let x ∈ [0, 1] be the scaled bee trait and
y ∈ [0, 1] the scaledflower trait.We assume that contact rates
are given by

h(y, x) p Cxe2j(y2x)2 , ð14Þ
where j ≥ 0 determines the degree of specialization in
the network, where larger values of j correspond to tightly
specialized bees, and Cx is again the value that satisfiesÐ 1
0h(y, x)dy p hB. This network model is illustrated in fig-

ure 2D.
Parameter Values

Through an extensive literature review and use of our own
data, we set default typical values and ranges of biologically
relevant values for each parameter, given in table 1. As these
values are used in all our subsequent analyses, their justi-
fications are provided here, with some additional details
in the “Further Explanations of Parameter Estimates” sec-
tion of the appendix. Flower abundance and bee birthrate
parameters are estimated for a circular area of 100m radius,
which is a typical foraging radius of many species of solitary
wild bees (Zurbuchen et al. 2010) and would represent a re-
gion within which individuals are transmitting pathogens
at shared floral resources. Ourmodel’s contact network rep-
resents the bees and flowers within this region, so bee birth-
rate refers to bees born within this region, and flower abun-
dance refers to the number of flowers within this region.
Honeybees and bumblebees have larger foraging radii (Vis-
scher and Seeley 1982; Waddington et al. 1994; McArt et al.
2017), but our model is appropriate for many solitary bees,
which are the largest fraction of bee abundance and diver-
sity in the communities that we study empirically.
NF: We used flower and inflorescence data from five east-

ern US old fields to estimate NF (A. Iverson, unpublished
data). We surveyed and identified all flowering plants in a
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10#25-m plot in each field using the modified-Whittaker
plot design (Stohlgren 2007; see app. B.1 for further details).
These data allowed us to estimate flower or inflorescence
density (as appropriate for each species) at daily time steps
throughout the growing season. We estimated mean flower
or inflorescence density for each species by calculating the
mean daily density over the primary growing season (day
of year 153–274, corresponding to June 1–Oct 1). All values
were scaled up to represent flower/inflorescence density in a
circle with a 100-m radius.

NB: Based on Mandelik et al. (2012), we take 60–120 for-
aging bees per hectare as an estimate for bee abundance in
old fields during the late spring and summer foraging sea-
sons; this scales up to (rounding slightly) 190–380 foraging
bees in a circle with a 100-m radius.

IB=NB: We used data from a study by Figueroa et al.
(forthcoming b) that measured prevalence of three patho-
gens (trypanosomes, neogregarines, andNosema spp.) among
586 bees representing 49 different species. The bees were
obtained from wildflower plots near eastern US old fields.
Pathogen prevalence in the bees was 32% for Nosema, 26%
for trypanosomes, and 6% for neogregarines; we used the
average of these as our default value.

b: We set values of b so that the steady-state bee abun-
dance in the absence of disease (number in a circle of radius
100 m), which is b=mS, is in our range for NB for the default
value of mS.

mS: We estimate that the average life span of a foraging
bee is 13 days to 7 weeks (Michener 1974; Winston 1987;
Michener 2007; Goulson 2009). Assuming a constant adult
mortality rate, the range of life spans translates to mortality
rates of 0.02–0.077/day. The midpoint of the range of life
spans is 31 days; our default value for mS is the inverse of
the midpoint, 0.032/day.

mI: We assumed that infection with a pathogen reduces
the bee’s average life span by 37%, based on infection trials
conducted across five pathogens (Apicystis bombi, Crithidia
bombi, deformed wing virus, Nosema apis, and Nosema ce-
ranae) in bumblebees and honeybees (Paxton et al. 2007;
Graystock et al. 2013a, 2013b; Furst et al. 2014; McMahon
et al. 2016).

hB: Using flower visitation rate estimates from Couvillon
et al. (2015) and an estimated foraging time of 8 h per day,
we estimated that foraging bees visit between 1,632 and
6,432 flowers per day.

a: Figueroa et al. (forthcoming a) found that noninfected
bumblebees defecate on 56% of flowers during a 3-h lab trial
with 10–30 flowers, while Crithidia-infected bees defecated
on 71% of flowers. We summarize these results by positing
that bees defecate into 64%of 20 flowers within a 3-h period.
If we assume that each defecation is into a randomly chosen
flower, then a flower’s probability of receiving none of N
defecations is (19=20)N . Solving (19=20)N p 0:36 for N
gives 20.5 defecations in a 3-h period. Then in an 8-h for-
aging period (visiting 4,032 flowers, in our model), it will
defecate in a fraction (20:5=3)#8=4,032 ≈ 0:014 of vis-
ited flowers. As this estimate is based on very limited data,
we consider a wide range of possible values, fivefold up or
down.
b: Because we were unable to find information that could

be used to estimated b, we instead set b to give an R0 value
such that the infection prevalence in bees in the single-species
model approximated the observed level of bee infection,
IB=NB, as described above. We used the approximation
R0 ≈ (S=N)21 (Keeling and Rohani 2008) to predict the
range of b realistic values. In all of our analyses, we set all
baseline parameter values except b to the values given in ta-
ble 1 and then adjusted b such that R0 p 1:3. These calcu-
lations are done in the provided R scripts for each analysis.
g: At most, a pathogen can inhabit a bee for its entire life-

time. If a typical life span is 31 days (mS, above) and infec-
tion reduces this by 37%, we get 19.5 days as an upper
bound on infection period. At the very least, a pathogen re-
sides in the bee for a minimum of about 1 h before it is ex-
creted in feces (Winston 1987). The midpoint of the range
of infective periods is about 9.75 days; our default value of
g is the inverse of the midpoint, g p 0:10. Combined with
our estimate of mI, this says that roughly 2=3 of infected bees
recover before dying of the disease.
z: Figueroa et al. (forthcoming a) estimated that bee

pathogen Crithidia bombi, a protozoan, can live on flowers
for at least 30 min, corresponding to z p 48. For an upper
limit, we used estimates from Kaya (1977) regarding viabil-
ity of Vairimorpha necatrix, a plant pathogen that is closely
related to Nosema, a common bee pathogen. On exposure
to ultraviolet radiation mimicking sun exposure, Kaya (1977)
showed thatV. necatrix could survive atmost 1 day on plants,
corresponding to z p 1. As our default, we therefore as-
sumed a half-day mean infection period, so z p 2.
Analyses

We used elasticity analyses to compare the importance of
bees and flowers with different trait values and, therefore,
with different positions in the trait-defined contact networks.
Elasticity is defined as the fractional change in a response,
relative to the fractional change in the perturbed parameter.
The responses we considered were pathogen reproduction
number R0 (whose value determines whether the pathogen
persists in the community) and pathogen prevalence in bees
at steady state (i.e., the number of infected bees of all classes
divided by the total number of bees). A parameter with pos-
itive elasticity causes the response variable to increase as the
parameter value increases and vice versa for a parameter
with negative elasticity. Magnitude (absolute value) of elas-
ticity characterizes the impact of a particular parameter: if
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parameter a has a larger magnitude of elasticity than pa-
rameter b, this means that a has a greater influence on the re-
sponse variable. Two different types of comparison can be
made. The first is comparing the same parameter (e.g., recov-
ery rate) between bees with different trait values or between
flowers with different trait values. A large response (and thus
a high elasticity) when we perturb a parameter away from its
trait-defined value for bees (or flowers) with a particular trait
value shows that those bees play an especially important role
in determining the response. The second is comparing differ-
ent parameters for bees with the same trait value or flowers
with the same trait value (e.g., recovery rate for bees with trait
value 0.5 vs. death rate for the same bees). Doing this for all
trait values in bees and flowers reveals which parameters are
most important for determining the response.

We did elasticity analyses at two scales, local and global.
Local elasticity analyses involve making small perturba-
tions away from a trait-independent default value given
in table 1 or away from the trait-dependent contact rate in
the nested or specialized network model for bees or flowers
of a particular trait value. This can be done using analytical
sensitivity formulas, as explained in sections S.3 and S.4, or
numerically by making small parameter changes and simu-
lating the model to find the resulting change in the response.
Global elasticity analyses involve varying simultaneously all
parameters for trait values at all mesh points (eq. [6]) in bees
and flowers across the entire range of biologically plausible
values given in table 1. Multiple regression modeling of the
response as a function of parameter values is then used to
compare the relative impacts of different parameters. A de-
tailed description of the global elasticity analyses methods
is in the appendix (“Numerical Global Elasticity Analyses”).

We considered three scenarios for trait distributions in
the community. The first is a uniform trait distribution in
both bees and flowers (achieved by making NF(y), b(x),
and m(x) constant as functions of trait values). In the others,
either bees or flowers have a nonuniform trait distribution
where extreme trait values (x or y near 0 or 1) are less com-
mon than intermediate values, as shown in figure S6. This
was done for bees by making b(x) a nonconstant function
of x with m(x) trait independent and for flowers by making
NF(y) nonconstant in y.
Results

In all cases (specialized or nested network and uniform or
nonuniform trait distribution), local elasticity analysis shows
that increasing b, a, and b have a positive effect on R0, while
increasing mS, mI, g, z, and NF have negative effects on R0

(figs. 3–5). Most of these are intuitive: R0 is increased by pa-
rameter changes that increase the number of bee-flower
contacts, increase the chances of transmission per contact,
or allow infected individuals to remain alive and infected
for longer.
The negative effect of NF (more flowers) is a dilution ef-

fect (Schmidt and Ostfeld 2001; Rudolf and Antonovics
2005). When more flowers of a given class are added, each
one receives fewer visits (because bee foraging effort has not
gone up in our model), and so each is less likely to become
infected and thus less likely to infect a visiting bee.
Uniform Trait Distributions

We now explore the relative importance of bees and flowers
with different traits. Consider first the case where traits are
uniformly distributed across bees and flowers (i.e., NF and
b are the same for all flowers and bees, respectively). In
the nested network model (fig. 3), R0 is most sensitive to
the parameters of the most attractive flowers and the most
selective bees. In the specialization model, parameters of
flowers and bees with intermediate traits (values near 0.5)
impact R0 more than those of flowers and bees with extreme
traits (values near 0 or 1). Analytic sensitivity formulas
(sec. S.3) confirm that the curves that visually appear to be
exactly equal (b, aB, and bB; aF and bF; NF and z) are indeed
exactly equal in this case.
In both specialization and nestedness models, differences

in elasticity among bee classes are relatively small, while dif-
ferences among flower classes are considerably larger. In
the asymptotic analyses for small n or j (secs. S.6, S.7),
the elasticities with respect to bee parameters are constant
as a function of bee trait x (i.e., lines with zero slope and
nonzero intercept), while the elasticities with respect to
flower parameters are nonconstant. In the nested network,
the flower trait elasticities are lines with nonzero slope, such
that parameters of more attractive flowers have larger ef-
fects on R0; in the specialization model, the flower trait elas-
ticities are parabolas with maximummagnitude at the aver-
age flower trait y p 0:5.
For both scenarios, local elasticities are mirrored in a

global sensitivity analysis (described in “Numerical Global
Elasticity Analyses”) over the entire range of parameter
values given in table 1 (fig. S3) and in a local elasticity anal-
ysis of steady-state pathogen prevalence (fig. S4). All param-
eters have the same qualitative relationship between sen-
sitivity and trait value and the same direction of effect on R0,
but the magnitudes differ among the three analyses. We also
used global sensitivity analysis to determine how R0 was af-
fected by increased nestedness or specialization. We found
∂R0=∂n was positive at 91% of parameter values in the nested
networkmodel, and ∂R0=∂j was positive at 85% of parameter
values in the specialization model.
The patterns in contact rate elasticities also closely re-

semble the patterns in parameter elasticities (fig. 6), mean-
ing that for both scenarios, the contacts that matter most
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are the contacts that happen most often. In the nested net-
work model, the most important visits are between attrac-
tive flowers and selective bees. Importance decreases rapidly
as flower attractiveness decreases and relatively slowly as
bee selectiveness decreases. Figure 6A matches the pertur-
bation analysis for weak nestedness (small n; sec. S.6). That
analysis shows that for a flower of above-average attractive-
ness, increasing the transmission rate from a more selective
bee has more effect on R0 than increasing transmission from
a less selective bee, while for a flower that is less attractive
than average, increasing the transmission rate from less se-
lective bees will have the larger effect on R0. In the special-
ization model (fig. 6B), the most important contacts are
near but not exactly on the diagonal line consisting of per-
fectly matched bee-flower pairs (x p y). Perturbation anal-
ysis for weak specialization (sec. S.7) shows that when j is
small, for any bee class x, the contact rate elasticity is max-
imized as a function of flower class y on the off-diagonal
line y p x=21 0:25. In the limit j → ∞, the only contacts
are between perfectly matched pairs, so elasticity is maxi-
mized on the diagonal y p x. The situation in figure 6B
with j p 10 is in between these limiting cases.
The importance of different bee and flower classes corre-

sponds to disease prevalence at steady state, as seen in fig-
ure 7. As nestedness increases, disease prevalence for all
classes increases; however, this is not the case in the special-
ization model, where greater specialization may mean that
some bees or flowers are impacted more and some are im-
pacted less.
Nonuniform Trait Distributions

Next, we consider the nonuniform trait distribution case (a
scenario in which traits are distributed so that extreme
Figure 3: Local elasticity analysis of R0 with respect to bee- and flower-specific parameters at the default parameter values. A, B, Bee- and
flower-specific parameters in the nested network model. C, D, Bee- and flower-specific parameters in the specialized network model.
Parameters in C and D are the same as in A and B, respectively: aB, bB refer to increasing by the same proportion all a(y, x) or b(x, y) values,
respectively, for a particular value of x; aF, bF refer to increasing all a or b values for a particular y. This figure was produced by R0_local_elasticity.R
and scripts that it sources (computer scripts deposited in the Dryad Digital Repository: https://10.5061/dryad.730n045; Truitt et al. 2019).
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traits are less common than moderate traits, as shown in
fig. S6).

When extreme flower traits are rare, flowers with rarer
traits aremore important, as shown infigure 4. In the nested-
ness case, the magnitude of the impact of rare, attractive
flowers is greater than that of rare, unattractive flowers. In
the specializationmodel, both of thesemagnitudes are equiv-
alent. Similarly, in the specialization model, bees that visit
rare flowers are more important than bees that visit com-
mon flowers. In the nestedness model, bees that visit attrac-
tive, rare flowers are even more important than bees that
visit unattractive, rare flowers.

When extreme bee traits are rare, bees with common traits
are more important, as shown in figure 5. Similarly, flowers
that interact with common bee classes are also more impor-
tant in the specialization model.
For both models and for nonuniform trait distributions
in bees and flowers, R0 local elasticity trends are preserved
in the local elasticity analysis of steady-state pathogen prev-
alence (figs. S9, S10). All parameters have the same qualita-
tive relationship between elasticity and trait value and the
same direction of effect on R0, but the magnitudes differ
among the analyses.
The sensitivity results for nonuniform trait distributions

reflect the change in disease prevalence across the network.
With nonuniform flower trait distribution (fig. S7), in the
nested network disease, prevalence is more concentrated in
themost attractiveflowers and specializedbees; in the special-
izationmodel, disease prevalence is concentrated in extreme-
trait (rarer) flowers and the extreme-trait bees that visit them.
With nonuniform bee-trait distribution (fig. S8), not much
change is evident in the nested network, but in the specializa-
Figure 4: Local elasticity analysis of R0 with nonuniform trait distribution in flowers (flower abundance NF(y) proportional to the curve in
fig. S6 in the online appendix).A, B, Bee- and flower-specific parameters in the nested networkmodel. C,D, Bee- and flower-specific parameters
in the specialized network model. Parameters in C and D are the same as in A and B, respectively. This figure was produced by R0_local_
elasticity_NF_NB.R and scripts that it sources (computer scripts deposited in the Dryad Digital Repository: https://dx.doi.org/10.5061/dryad
.730n045; Truitt et al. 2019).
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tion model, disease is now concentrated in intermediate-trait
bees and in the intermediate-trait flowers that they interact
with most.

Discussion

In this article, we proposed and studied a trait-based model
of disease transmission in multihost plant-pollinator net-
works.While we applied ourmodel to pollinators and path-
ogens, its framework is general enough that it can be ap-
plied to species interactions in any community. Thus, the
goal of our model is not only to advance a trait-based ap-
proach for understanding disease transmission among polli-
nators but more generally for understanding multispecies
communities.While promoting this approach, we do not deny
that species identity matters and that it may be paramount
in some cases. Instead, we are proposing that when species
interactions are driven by functional traits, a trait-distribution
model may be a much simpler approach to modeling the sys-
tem (e.g., we used one parameter to describe a contact net-
work driven by trait matching vs. hundreds to describe every
pairwise interaction). Thus, a trait-based approach affords
themodel more predictive power andmakes it easier to iden-
tify general properties of transmission in species interaction
networks.
Empirical data on bees, pathogens, and flowers were

gathered and used to parameterize plant-pollinator net-
works. We found that in the single-class model, the disease
reproductive number has a quadratic relationship with pol-
linator contact rate (eq. [4]), analogous to the vector biting
rate in models for vectored diseases. This finding is mirrored
in the trait-based model, where the reproductive number is
proportional to the dominant eigenvalue of HTH, where H
is the operator with kernel h(y, x) (eq. [12]). With uniform
trait distributions, R0 and disease prevalence were most sen-
Figure 5: Local elasticity analysis of R0 with nonuniform trait distribution in bees (b(x) proportional to the curve in fig. S6 in the online
appendix). A, B, Bee- and flower-specific parameters in the nested network model. C, D, Bee- and flower-specific parameters in the special-
ized network model. Parameters in C andD are the same as in A and B, respectively. This figure was produced by R0_local_elasticity_NF_NB.R
and scripts that it sources (computer scripts deposited in the Dryad Digital Repository: https://dx.doi.org/10.5061/dryad.730n045; Truitt et al.
2019).
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sitive to selective bees and attractive flowers in the nested net-
work model and to bees and flowers with intermediate trait
values in the specializationmodel. Nonuniform trait distribu-
tions increased the importance of bees with more common
trait values and of flowers with less common trait values.
Our results regarding nestedness and specialization are likely
generalizable because these attributes are extremely common
in species interaction networks (e.g., Bascompte et al. 2003;
Cantor et al. 2017). Indeed, there is some evidence that nest-
edness and specialization may arise as unavoidable spandrels
in any community of interacting species (Maynard et al. 2018;
Valverde et al. 2018).

A commonality across all analyses is that disease persis-
tence and prevalence are most sensitive to areas of concen-
trated visitation in the network. Specifically, disease spread
is sensitive to flower classes that are visited disproportion-
ately often relative to their abundance and to the bee classes
that collectivelymost often visit those flowers. In section 3.8,
these importance measures based strictly on visitation rates
are defined precisely and are shown to align closely with the
results of elasticity analysis. These areas act as disease hot
spots, the equivalent of a watering hole in trait space, where
disease is prevalent and frequently transmitted. These find-
ings are consistent with the empirical data from multihost
systems where pronounced among-individual heterogene-
ity in transmission is often observed (Paull et al. 2012; John-
son et al. 2015a, 2015b). For example, among six grass spe-
cies exposed to barley yellow dwarf virus, plants with high
leaf nitrogen and high metabolic rates had higher suscep-
tibility and larger vector populations, likely because their
leaf traits offered more resources for vector and pathogen
growth (Cronin et al. 2010). Similarly, species with highly
social behavior can be at increased risk of contracting path-
ogens due to higher contact rates (Altizer et al. 2003). Fur-
thermore, traits of the transmission environment have also
been shown to be important. For example, across 120 ver-
tebrate species in China that are competent hosts of Schis-
tosomiasis japonica, in marshlands, bovids were the main
source of transmission, whereas in hilly areas, rodents were
themost important pathogen reservoirs (Rudge et al. 2013).
Such examples highlight how host and reservoir traits can
shape species interactions and transmission potential, sim-
ilar to the results from our trait-based model.
We found that the value of R0 was substantially decreased

by increasing the population size of the flowers that were
visited most often relative to their abundance. For example,
R0 decreased when themost attractive flowers increased in a
nested network with uniform trait distributions. Addition-
ally, R0 was decreased by flowers that are attractive and rare
in a nested network with nonuniform trait distributions
and by flowers with intermediate traits in a specialized net-
work with uniform trait distributions or with a high abun-
dance of intermediate bee classes. While this initially seems
counterintuitive, it is a dilution effect resulting from our as-
sumption that increased flower abundance does not change
the total number of visits a bee makes to all flowers com-
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rameter values with uniform trait distributions. A, Nested network model with n p 3. B, Specialized network model with j p 10. Because
the unperturbed transmission matrix is symmetric in this case, elasticity for bee class x to flower class y transmission is the same as that for
flower class y to bee class x transmission. Plotted values are scaled to represent elasticities in the continuous trait model (i.e., the integral of
each elasticity surface is 1, corresponding to the fact that increasing all a values—or all b values—by a factor 11 ε increases R0 by the same
factor). This figure was produced by ContactElasticityImages.R (computer scripts deposited in the Dryad Digital Repository: https://dx
.doi.org/10.5061/dryad.730n045; Truitt et al. 2019), using the elasticity formulas derived in section S.3 of the online appendix.



Traits and Disease Spread E163
bined. Therefore, an increase in the popular flower popula-
tion size decreases the likelihood that a bee comes in contact
with any one single infected flower, thus potentially reduc-
ing pathogen spread. Such dilution effects are common in
communities where species vary in reservoir competence,
though the specific mechanisms underlying changes in dis-
ease prevalence and spread often are not known in empir-
ical systems (Ostfeld and Keesing 2012).

Several aspects of our model could be improved and ex-
tended. First, for simplicity, our model assumed that plants
and pollinators were each characterized by a single trait, but
pollinators typically respond to multiple traits when choos-
ing which flowers to visit. Flower morphology, scent, and
even electrical field are important filters of visitation by bees
and other pollinators (Raguso 2008; Ollerton et al. 2009;
Clarke et al. 2013). Little is known regarding how pollina-
tors integrate multiple traits, although such trait integration
can influence flower choice (Chittka and Raine 2006) and
might play an underappreciated role in structuring plant-
pollinator networks (Junker et al. 2013). Coupled heteroge-
neities in multiple host, pathogen, or vector traits can have
important impacts generally in host-pathogen systems
(Vazquez-Prokopec et al. 2016). In our framework, trans-
mission mediated by multiple traits could increase the im-
portance of hot spots in trait space where multiple traits are
all just right for the pathogen to establish, persist, and trans-
mit across the network. The presence and nature of between-
trait correlations could then be important factors in disease
persistence and prevalence. Experiments investigating which
particular traits lead to specialization on particular flowers
and which traits characterize flower attractiveness in general
could increase realism of the model. For example, a recent
experiment found thatmanipulation of one floral trait (flower
shape) greatly impacted plant-pollinator network structure
(Urban-Mead 2017), which could impact patterns of disease
transmission. Second, in addition to considering multiple
traits, the model contains eight additional parameters (mor-
tality, recovery, etc.) that each could be impacted by traits.
Finally, our model does not consider direct host-to-host
transmission, but such transmission occurs in social bees
(e.g., Naug 2008), so combining intracolony dynamics with
the plant-pollinator network will be necessary to account
for patterns analogous to clustering in networks (e.g., Watts
and Strogatz 1998; Eubank et al. 2004).
In conclusion, we introduced a new trait-based approach

for predicting disease transmission in species-rich pollina-
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Figure 7: Image and contour plots of steady-state disease prevalence (proportion of infected individuals). In each panel, a vertical slice (such
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n or specialization parameter j. This figure was produced by SteadyStateImages.R (computer scripts deposited in the Dryad Digital Repos-
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tion networks that can also be appliedmore generally to any
community of interacting organisms. Our model suggests
that, all else being equal, greater nestedness and specializa-
tion both generally promote disease spread within a net-
work through the creation of disease hot spots in trait space.
Furthermore, these results suggest possible ways of limiting
pollinator pathogens by targeted wildflower plantings that
restructure the network. For example, maximizing forage
for pollinators is typically the sole consideration when land
managers design pollinator-friendly wildflower strips on
public lands or near agricultural settings (Blaauw and Isaacs
2014; Landis 2017; Williams and Lonsdorf 2018). However,
an additional consideration could be to plant floral mix-
tures containing species with traits that minimize disease
transmission. By focusing on traits rather than species iden-
tities, recommendations could be general and therefore not
require specific knowledge of every plant in every local en-
vironment. Such predictions clearly need to be tested em-
pirically since any change could have multiple effects, but
the potential benefits are clear. Because global pollinator de-
clines are caused in part by pathogens, increased under-
standing of the factors governing pathogen transmission
in plant-pollinator networks is important for improving pol-
linator health.
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APPENDIX

Additional Technical Information

Further Explanations of Parameter Estimates

NF: We sampled five old fields in 2015 using modified-
Whittaker sample plots. In each plot, we collected presence/
absence data for each species in the full plot and larger
subplots and recorded cover estimates for each plant spe-
cies in 10 0:5#0:5-m quadrats. Because NF is linked to
bee-flower interactions in our model, our estimate is a com-
bination of flower and inflorescence abundance depending
on the plant species. For example, flowers from some spe-
cies are too small for bees to interact with individually
but instead are organized on an inflorescence that bees in-
teract with as a group (e.g., Solidago juncea). Flowers from
other species are large enough for bees to interact with in-
dividually (e.g., Penstemon digitalis). Thus, for each of the
53 plant species surveyed, we chose whether the flower or
inflorescence was the most appropriate unit of measure-
ment. To calculate flower/inflorescence density on a given
day across the growing season, we first recorded the flower/
inflorescence density for each species at peak bloom in a
minimum of five 0:5#0:5-m quadrats. Next, we modeled
the floral density of each species according to a normal dis-
tribution across the entire bloom period, with a maximum
set at the peak bloom density. Bloom period data were based
on local phenology data collected in the flora of the Cayuga
Lake Basin, New York (Wiegand and Eames 1926).

b: This estimate gives b ≈ 0:032#(190–380) p (6:1–
12:3).

mS: Winter honeybees are known to live longer than
7 weeks but are not included here because they are not ac-
tively foraging (and potentially transmitting pathogens at
flowers) during the winter.

mI: The estimate implies 1=mI p 0:63=mS; hence, mI p
(1=0:63)mS ≈ 1:6mS. Thus, the range and default for mI are
1.6 times those for mS.
Numerical Global Elasticity Analyses

We ran 500,000 trials for each global sensitivity analysis of
model parameters. In each trial, values within the ranges
specified in table 1 were generated for each parameter for
all bee and flower classes using Latin hypercube sampling
(R function randomLHS in the sensitivity package; Pujol
et al. 2017). Contact matrices were formed as specified in
equation (13) or (14) according to each class’s Hb, with
n p 3 for nestedness and j p 10 for specialization. For
each trial, R0 or disease steady state was calculated using
that trial’s parameter values. Once all trials were completed,
a linear model was fit to the rank of the R0’s or the disease
steady state’s as a function of the rank of the parameter
values used. The main script file is R0_global_sensitivity.R.

To determine the effect of n and j on R0, 10,000 sets of
model parameters were generated as described in the previ-
ous paragraph and paired with 10,000 randomly generated
values of n (uniform on (0, 15)) or j (uniform on (0, 30)).
We then recalculated R0 for n or j increased by 0.1. The
main script file is R0_and_Network_global.R.
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