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Abstract

Admixture graphs are mathematical structures that describe the ancestry of populations in

terms of divergence and merging (admixing) of ancestral populations as a graph. An admix-

ture graph consists of a graph topology, branch lengths, and admixture proportions. The

branch lengths and admixture proportions can be estimated using numerous numerical opti-

mization methods, but inferring the topology involves a combinatorial search for which no

polynomial algorithm is known. In this paper, we present a reversible jump MCMC algorithm

for sampling high-probability admixture graphs and show that this approach works well both

as a heuristic search for a single best-fitting graph and for summarizing shared features

extracted from posterior samples of graphs. We apply the method to 11 Native American

and Siberian populations and exploit the shared structure of high-probability graphs to char-

acterize the relationship between Saqqaq, Inuit, Koryaks, and Athabascans. Our analyses

show that the Saqqaq is not a good proxy for the previously identified gene flow from Arctic

people into the Na-Dene speaking Athabascans.

Author summary

One way of summarizing historical relationships between genetic samples is by construct-

ing an admixture graph. An admixture graph describes the demographic history of a set of

populations as a directed acyclic graph representing population splits and mergers. The

greedy search algorithms that are typically used to infer admixture graphs may fail to find

the globally optimal graph. We here improve on these approaches by developing a novel

MCMC sampling method, AdmixtureBayes, that can sample from the posterior distribu-

tion of admixture graphs. This enables an effective search of the entire state space as well

as the ability to report a level of confidence in the sampled graphs. We apply Admixture-

Bayes to a set of Native American and Arctic genomes to reconstruct the demographic

history of these populations and report posterior probabilities of specific admixture
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events. While some previous studies have identified the ancient Saqqaq culture as a source

of introgression into Athabascans, we instead find that it is the Siberian Koryak popula-

tion, not the Saqqaq, that serves as the best proxy for gene flow into Athabascans.

Introduction

Admixture graphs [1] provide a concise description of the historical demographic relation-

ships between genetic samples of populations, assuming their relationships are the product of

discrete, instantaneous splits and admixture events. The assumption of discrete, instantaneous

events is clearly an oversimplification for most real data, but it facilitates interpretation and

makes admixture graphs a popular first step in analyses. Each graph topology is associated

with parameters capturing genetic drift and admixture proportions, and once these are fitted

to genetic data, the goodness of fit can be measured to determine how accurately the graph

captures the historical relationship between samples. Inferring graph topologies, however,

involves a combinatorial search, and since the space of graphs grows super-exponentially in

the number of populations and the number of admixture events, an exhaustive search is typi-

cally not possible. Instead, the search for well-fitting topologies is often done manually or

through greedy algorithms.

The most popular methods for estimating admixture graphs are TreeMix by Pickrell and

Pritchard [2], qpGraph by Patterson et al. [1], and OrientAGraph by Molloy et al. [3], all of

which take a greedy approach to searching the state space of graph topologies. qpGraph allows

users to sequentially identify the best phylogenetic position of a possibly admixed population

in a previously established admixture graph and evaluate the improved fit in terms of simple

allele-sharing statistics. The program MixMapper by Lipson et al. [4] employs a similar strategy

and has options for fitting up to two admixture events simultanously. TreeMix estimates an

admixture graph de novo by automatically estimating the best tree without admixture events

followed by automatic, sequential insertion of the admixture branches. In contrast to MixMap-

per and qpGraph, TreeMix searches through potential admixture graphs without user input by

way of an efficient greedy heuristic. OrientAGraph is based on the TreeMix approach, but

adds a technique called maximum likelihood network orientation, which helps avoid getting

stuck in incorrect local optima during the optimization process. The method miqograph
employs mixed-integer quadratic optimization to search through the space of admixture

graphs but restricts admixture events to the leaf nodes of the graph [5].

To penalize deviations from the expected and observed allele sharing statistics, all five

methods use a Gaussian model for the distribution of allele frequencies among populations.

The implicit assumption in the Gaussian model is that changes in allele frequency due to

genetic drift can be approximated as a Brownian motion process. This assumption dates back

to the early work by Edwards and Cavalli-Sforza [6] and has recently re-emerged as a compu-

tationally attractive alternative to the full Wright-Fisher process. It has previously been used in

several other methods aimed at modeling the joint distribution of allele frequencies among

populations [7] [8] [9].

There are also phylogenetic network methods that infer admixture graphs using sets of

locus-specific gene trees as nuisance parameters which are either pre-estimated [10] or inte-

grated out using MCMC [11] [12]. These approaches must evaluate the likelihood of each gene

tree separately, making them more computationally expensive and therefore limited to fewer

populations than the Gaussian drift models. To handle larger datasets, some methods summa-

rize all the gene trees into a few statistics that are evaluated with a pseudolikelihood [13] [14]
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for a small reduction in accuracy [14]. In terms of speed, these pseudolikelihood methods are

similar to the Gaussian drift methods. However, the Gaussian approach offers a way to instead

approximate a true likelihood (rather than a pseudolikelihood), which we use in this paper.

The greedy search algorithms used by current methods do not guarantee that the inferred

graph is optimal. In practice, the optimal graph found by a greedy search can potentially be

very different from better-fitting, but never-discovered, graphs [3] [15]. Regardless of whether

a search finds the optimal graph or not, if a single graph is inferred and used for all downstream

analysis, that point estimate would not intrinsically report confidence in various estimated fea-

tures, such as the topology of relationships among populations, the presence or absence of

admixture events, and the intensity of those events. There might be many graphs that fit the

data equally well, and we should have more confidence in features shared among many of them

than we should in features that are only found in some of them; shared features are most likely

signals in the data while those that rarely occur are most likely spurious. Analyses based on a

single graph do not distinguish between features that are estimated with high confidence and

those estimated with low confidence. While it is possible to generate a distribution of TreeMix

graphs across independent analyses of bootstrap replicates, it is rarely done in practice.

Here, we provide an alternative to greedy searches. Based on a model similar to TreeMix

and qpGraph, we develop a Bayesian approach to sample over the graph-space using a revers-

ible jump Markov Chain Monte Carlo (MCMC) method. The method can identify the graph

with the highest likelihood encountered by the MCMC sampler, thereby effectively working as

a heuristic maximum-likelihood optimizer, or it can report several summaries of the posterior

distribution of admixture graphs. For example, it can estimate the graph topology with the

highest marginal posterior when integrated over admixture and divergence times as measured

by occupancy in the MCMC sampler. A marginal posterior is computed in admixturegraph
[16] as well, but the exhaustive search algorithm of admixturegraph finds the graph with the

highest posterior—not the graph shape with the highest marginal posterior. A particular

strength of our new method is that it circumvents the need to report a single best graph by

allowing calculations of posterior probabilities of particular marginal relationships between

populations. We consider three approaches for this: one based on simplifying admixture

graphs into simpler structures, one based on summarizing shared topologies into a consensus

graph, and one based on subgraph analysis. If the number of leaves in the considered subgraph

is kept small, we will observe few distinct subgraphs with these leaves, and we can estimate a

complete posterior distribution over these graphs. Sampling subgraphs from the space of full

graphs allows us to incorporate information from other populations when exploring the rela-

tionship between a subset of the populations.

We illustrate the utility of our method using simulations and reanalyze a previously pub-

lished genomic dataset of Siberians and Native Americans [17]. We use the method to revisit

two important and controversial questions in the history of the peopling of the Americas.

First, we analyze the origin of the Inuit and show that they are modeled best as an admixture

between a population represented by the Saqqaq genome, and a population represented by

Athabascans. Secondly, we show that Athabascans are best represented as admixed between a

Native American population and a Siberian population most closely related to the Koryak, but

not the Saqqaq.

Results

Method overview

We here present AdmixtureBayes, an MCMC algorithm for sampling admixture graphs from

their posterior distribution, given a set of genetic data from multiple populations.
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We begin by presenting our formal definition of an admixture graph. An admixture graph

consists of a topology and a set of continuous parameters. The space of topologies for a given

number of leaves, L, consists of all uniquely labeled graphs of the set of all directed acyclic

graphs which fulfill

1. There exists one and only one root. That is a node with one parent (the outgroup) and

exactly two children.

2. The number of nodes of degree 1 is L + 1. L of these nodes have only one parent and are

called leaves. 1 of these nodes is called the outgroup and has exactly one child, the root.

3. If a node is not the root, a leaf, or the outgroup, it has either

a. 1 parent and 2 children in which case we call it a divergence node.

b. 2 parents and 1 child in which case we call it an admixture node.

4. There are no eyes, i.e. the parent nodes of an admixture node are distinct (and the child

nodes of a divergence node are distinct).

The labeling consists of

1. All leaves and the outgroup are given a unique label.

2. Parent edges of an admixture node can be either a ‘main’ branch or an ‘admixture’ branch.

All admixture nodes have one parent edge of each type.

We do not label branches and nodes in general, meaning that even though the the leaves

are given a unique label, the leaves themselves are not unique. For example, switching the

labels of two leaves that form a cherry in the graph, would not change the graph topology. For

a more formal definition, see the definition of topology in S1 Text. All branches have a length

in the interval (0,1) and all admixture nodes are given an admixture proportion in the inter-

val (0, 1).

The Methods section describes our implementation of a Markov Chain Monte Carlo

(MCMC) algorithm, AdmixtureBayes, which samples admixture graphs from their posterior

distribution. We summarize genetic data from multiple populations as a matrix that captures

how allele frequencies in the data covary between populations. AdmixtureBayes samples

graphs that explain this covariance matrix. The topology of any sampled graph captures the

relationships between samples as a mixture of the graphically structured covariance matrices.

Branch lengths capture the amount of genetic divergence between populations, measured by

drift, and admixture events explain shared allelic covariance between otherwise independently

evolving populations. As a property of the MCMC algorithm, each graph is sampled at a fre-

quency corresponding to its posterior probability. AdmixtureBayes is available to use at

https://github.com/avaughn271/AdmixtureBayes.

Comparisons with TreeMix and OrientAGraph

We compared the accuracy of AdmixtureBayes to TreeMix and OrientAGraph on 4 distinct

admixture graphs, shown in Fig 1. We simulated datasets from each of these admixture graphs

in msprime [18] by using the add_population_split and add_admixture options

and adjusting event times and population sizes until the allele frequency drift terms matched

those of the admixture graph.

We then analyzed all simulated datasets with AdmixtureBayes, TreeMix, and OrientA-

Graph (see the section “Running AdmixtureBayes, TreeMix, and OrientAGraph” for details).

Comparing their accuracy is not straightforward because TreeMix and OrientAGraph produce
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Fig 1. The graphs G1, G2, G3, and G4 used for the comparisons between methods. G1 and G2 are not based on any real dataset, but the branch

lengths are chosen to have human-like values. Out was used as the outgroup for both graphs. G3 is based on M1 from Molloy et al. (2021), the graph

that motivated the development of the MLNO approach of OrientAGraph. We have changed some of the branch lengths. popE was used as the

outgroup. G4 is based on Model M7 from Fig 3 of Molloy et al. (2021), which is in turn based on Fig 7a from Wu (2020) [19]. The populations ITU,

JPT, and ASW have been removed. The YRI population was used as the outgroup. For all graphs, as in Molloy et al. (2021), branch lengths are not

shown to scale and are shown multiplied by 1000. Divergence nodes are shown as circles. Admixture nodes are shown as rectangles. The fractions

inside the admixture nodes denote the contribution from the population represented by the dashed line.

https://doi.org/10.1371/journal.pgen.1010410.g001
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one graph whereas AdmixtureBayes produces posterior samples of graphs. In addition, Tree-

Mix and OrientAGraph assume a fixed number of admixture events, whereas AdmixtureBayes

samples graphs with different numbers of admixture events. We ran TreeMix and OrientA-

Graph conditioned on the true number of admixture events, while we considered all graphs

produced by AdmixtureBayes, even those with the wrong number of admixture events. We

note that this could increase the error of AdmixtureBayes. Furthermore, both TreeMix and

OrientAGraph allow admixture involving the branch to the outgroup, which AdmixtureBayes

does not. The extent to which this was a problem varied between simulation models, so we

handled this on a case-by-case basis. We used three metrics to compare the graphs inferred by

these methods to the true underyling admixture graph. The Topology Equality is a simple met-

ric that is 1 if the inferred graph has the same topology as the true graph and 0 otherwise. The

next metric we considered is the Covariance Distance, defined as the Frobenius distance

between the allelic covariance matrix of the true graph and the allelic covariance matrix of the

inferred graph (see Methods). Finally, we measured the Set Distance, which we defined as a

topological distance measure similar to the Robinson-Foulds metric (S9 Fig; Methods section).

For each of the 4 admixture graphs we analyzed (see Fig 1), we performed the following

analysis: 20 independent datasets were simulated using msprime and all three methods were

run on each dataset. Then, each of the three metrics was calculated for the results of each

method. For AdmixtureBayes, we measured both the accuracy of the sampled graph with the

highest posterior (we call this the AdmixtureBayes Mode) and the mean accuracy of a graph

sampled from the posterior (we call this the AdmixtureBayes Mean). We plot the values of

these metrics across the 20 datasets as boxplots in Fig 2. We also highlight that an excellent

comparison of TreeMix, OrientAGraph, and miqograph was done in Molloy et al. [3], which

both illustrated OrientAGraph’s ability to infer topologies TreeMix could not and demon-

strated that miqograph was unable to infer topologies with deep admixture events.

On graph G1, which contains 1 admixture event, all methods perform similarly well. The

correct topology was inferred by all methods on all datasets (giving a Set Distance value of 0),

and the accuracy of the covariance matrix implied by each of the inferred graphs (as measured

by the Covariance Distance) is quite similar.

On graph G2, which contains no admixture events, TreeMix and OrientAGraph are able to

infer the correct topology for all 20 datasets. The Mode estimate of AdmixtureBayes also infers

the correct topology in all cases. For all datasets, the AdmixtureBayes Mean topologies are

highly concentrated on the true topology, though there is some variation. This is to be expected

given the inherent noise in the data. It is also worth noting that the incorrectly inferred topolo-

gies sampled by AdmixtureBayes may include graphs with an admixture event, an error which

we do not allow TreeMix and OrientAGraph to make as we run them with the correct number

of admixture events (zero). We note that the AdmixtureBayes Covariance Distance is slightly

larger than the TreeMix and OrientAGraph distances. This is to be expected as both of those

methods explicitly perform optimization on branch lengths and admixture proportions, which

will likely result in a better model fit than the graph AdmixtureBayes samples that happens to

have the highest posterior.

On graph G3, which has one admixture event, TreeMix does quite poorly. This is by design,

as G3 is based on Model M1 from Molloy et al. [3], which motivated the development of

OrientAGraph. In particular, TreeMix incorrectly infers an admixure event involving the out-

group in 17 out of the 20 datasets. Of the 3 remaining datasets, TreeMix was only able to infer

the correct topology for 2 of them. We only plot the accuracy statistics for the 3 graphs that do

not involve admixture with the outgroup as these are the only graphs that exist in the same

state space as AdmixtureBayes. However, we highlight that the boxplots in Fig 2 do not neces-

sarily represent all simulated datasets.
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Fig 2. We here plot the results of our method comparison with TreeMix and OrientAGraph. For each of the graphs in Fig 1, we simulated 20

datasets and ran each method on each dataset. We compared the accuracy of each method with the 3 statistics discussed in the section Comparisons

with TreeMix and OrientAGraph. For AdmixtureBayes, we examined both the Mode graph (the sampled graph with the highest posterior) and the

mean value of the statistics when 100 graphs are sampled from the posterior (we refer to this as the AdmixtureBayes Mean). TreeMix and OrientAGraph

allow admixture involving the outgroup, an error which AdmixtureBayes is not allowed to make. For fairness, we only plot the results for the graphs not
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In contrast to TreeMix, OrientAGraph never infers admixture involving the outgroup and

infers the correct topology in almost 80% of all datasets. AdmixtureBayes, however, outper-

forms both methods by inferring the correct topology for all datasets, both using the Mode

estimate and the Mean estimate. We attribute this to a superior framework for exploring the

state space of topologies. We still note that TreeMix and OrientAGraph provide better esti-

mates of branch lengths and admixture proportions, which we again attribute to the fact that

AdmixtureBayes is not designed for optimizing the likelihood function for branch lengths but

instead provides posterior distributions. If point estimates for branch lengths are of interest,

we recommend that users optimize the branch lengths using other methods with the Admix-

tureBayes Mode topology fixed.

Graph G4 represents a very complicated topology and is based on a model used by Molloy

et al. [3] to represent the shortcomings of OrientAGraph. TreeMix incorrectly infers an

admixture involving the outgroup for all datasets, so we do not plot the results from running

TreeMix. OrientAGraph incorrectly infers an admixture involving the outgroup for 14 data-

sets, leaving 6 datasets to compare with AdmixtureBayes. We see that OrientAGraph never

infers the correct topology and never has a Set Distance of less than 4. In contrast, the Admix-

tureBayes Mode estimate represents the correct topology for more than half of all datasets,

which we again attribute to a superior framework for exploring the state space of topologies.

The AdmixtureBayes Mean estimates are fairly noisy, but still represent a posterior distribu-

tion that is often concentrated on the true topology. The optimization employed by OrientA-

Graph results in a lower Covariance Distance than AdmixtureBayes, even in the presence of an

incorrect topology. Performing a similar optimization on the AdmixtureBayes Mode topology

will likely yield a smaller Covariance Distance if a point estimate of an admixture graph with

branch lengths is desired. From these results, we conclude that the MCMC framework of

AdmixtureBayes provides an effective algorithm for searching through the topology space of

admixture graphs and often infers the correct topology when other methods do not. All of the

scripts used to run these simulations can be found in the SimulationStudy folder on the

AdmixtureBayes GitHub.

Exploring the genetic history of Saqqaq, Inuit and Native Americans

In the simulation section above, we demonstrated that AdmixtureBayes includes an effective

algorithm for exploring the space of admixture graphs. However, the real advantage of the

method is in its ability to quantify probabilities of graphs and subgraphs, and thereby to pro-

vide measures of statistical uncertainty. We illustrate the utility of the method on a set of previ-

ously published Siberian and Native American samples [17] to explore the relationship

between Siberian Chukotko-Kamchatcan speakers (Koryak), an ancient individual from the

extinct Saqqaq culture (Saqqaq), Inuit-Yupik-Unangan speakers (Greenlandic Inuit), and Na-

Dene speakers (Athabascan). The dataset also contained North and South Americans (Anzick,

Aymara) and various other groups. We chose the Yoruba population as the outgroup. Running

time of AdmixtureBayes was 50 hours in parallel on 32 cores.

To extract information from the posterior distribution of admixture graph topologies, we

introduce two ways of summarizing relationships among sets of focal populations (for details,

see Methods). Both are based on summarizing each sampled admixture graph in the posterior

into a topology set, which is the set of all nodes labeled by their descendants. This discards

involving admixture with the outgroup. We have listed the number of datasets that resulted in such graphs in parentheses next to the method name on

the x-axes. The Topology Equality statistic for TreeMix, OrientAGraph, and the AdmixtureBayes Mode can only be 0 or 1, so we plot a horizontal line at

the mean value over the datasets, rather than a true boxplot.

https://doi.org/10.1371/journal.pgen.1010410.g002
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information about the number of and timing of admixture events (see S9 Fig). From such a

topology set, we can create the minimal topology, which is the ‘simplest’ directed graph yielding

the same topology set (see S10 Fig). The two minimal topologies with the highest posterior

probabilities are shown in Fig 3. We also considered the frequency of each internal node across

posterior samples. In Fig 3 these frequencies are denoted as percentages in parentheses in each

node. The second summary of the admixture graph sample is the set of nodes with a frequency

higher than α in the topology sets, which we denote as the consensus graph at threshold α. S6

Fig shows this summary for α = 0.75.

While no single graph received high support when including all data, we can extract sub-

graphs that are informative about the relationships between specific subsets of populations.

With AdmixtureBayes, it is possible to consider the relative support, in terms of posterior

probability, of individual subgraphs. Analyzing the support for subgraphs within the context

of a larger admixture graph has an advantage over analyses limited to the focal populations

represented in the subgraph, that information from other populations can be directly taken

into account.

There has been considerable debate about the relationships between populations repre-

sented by the Koryak, Saqqaq, Greenlanders, and the Athabascans. Archaeological evidence

suggests that the Inuit people from Greenland and people from the now extinct Saqqaq culture

represent independent migrations into the Americas from Eastern Siberia and the area around

the Bering strait [20] [21] [22]. However, there is some debate about the origin of the Athabas-

cans [21] [23] [24] [25]. Most molecular evidence of Athabascan ancestry is thought to have

originated from the first migration of people into the Americas that also gave rise to most

Fig 3. The two minimal topologies with the highest posterior probabilities in our real dataset. Leaf nodes that are the product of an admixture event

are shown in purple. Leaf nodes that are not the product of an admixture event are shown in light blue. The root is shown in black. Each inner node is

colored according to the posterior probability that the true graph has a node with the same descendants. Higher probabilities have a darker shade of

green. The posterior probability is written as a percentage in parentheses inside each node, next to the node name, which is arbitrary. The left graph has

a posterior probability of 32%. The right graph has a posterior probability of 19%.

https://doi.org/10.1371/journal.pgen.1010410.g003
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other Native American groups, such as the indigenous people in Central and South America.

However, some portion of genetic variation in Athabascans seems to have also originated from

other groups, perhaps related to Inuit, Saqqaq, or other Siberians such as the Koryak. Naming

and identifying sources of genetic variation is further complicated by the fact that these possi-

ble reference populations may themselves be admixed. A marginal analysis of the relationship

between Koryak, Saqqaq, Greenlanders, and Athabascans, that can take gene flow from other

groups into account, is therefore very much wanted.

S7 and S8 Figs depict the subgraphs for different subsets of these groups and for all groups

together, extracted from the posterior distribution of graphs from the full dataset. The most

strongly supported subgraph for Saqqaq, Athabascan, and Koryak supports the tree ((Athabas-

can, Koryak), Saqqaq) with 96% posterior probability. This implies that a relationship where

the gene flow into Athabascans came from a population closer to the Saqqaq, than to the Kor-

yak from Siberia, is not supported by the data. In contrast, when considering the relationship

between Koryak, Athabascans and the Inuit Greenlanders, the most strongly supported admix-

ture graph is a tree with the structure ((Athabascan, Greenlander), Koryak), likely reflecting

gene flow into the Inuit Greenlander from Native Americans related to Athabascans.

We emphasize that in these inferences, by analyzing the posterior probability of subgraphs

embedded within larger graphs, we have also explicitly modeled the effects of gene flow from

other groups including various Siberian, Native American, and East Asian groups. When con-

sidering all four populations together, the Greenlanders are best modeled as a population

admixed between Athabascan related populations and Saqqaq related populations. Again,

there is no apparent gene flow between the Saqqaq and the Athabascans following their initial

divergence. We also ran TreeMix and OrientAGraph on our dataset, each with a varying num-

ber of admixture events. We plot the results in S16 Fig. All of the scripts used to run the

AdmixtureBayes analysis can be found in the RealDataAnalysis folder on the AdmixtureBayes

GitHub, and the TreeMix and OrientAGraph results can be found in the OtherMethodsReal-

Data folder.

Discussion

We here present the program AdmixtureBayes, which is a method for inferring admixture

graphs using MCMC. On simulated data, it infers graph topologies more accurately than both

TreeMix and AdmixtureBayes, likely caused by these methods getting stuck in local optima

topologies during the admixture edge addition process. However, we also note that even with

AdmixtureBayes, the correct topology is not always inferred, suggesting that the reporting of a

single “best graph” may not necessarily be best practice. As is common in phylogenetics,

admixture graphs should report measures of statistical confidence for the relationships

inferred among internal nodes in the graph, as is reported in this paper.

We also encourage the use of embedded subgraphs as a powerful approach for investigating

the relationship between specific populations while taking gene flow from other reference pop-

ulations into account, as was done in S7 and S8 Figs. The use of posterior probabilities, as

reported here, is facilitated by the use of a bootstrap procedure that can estimate the effective

number of independent SNPs. In our real data analysis, we obtained information from human

genomes corresponding to approximately 40,000 independent SNPs. This number determines

the peakedness of the likelihood surface, which directly influences the posterior distribution of

admixture graphs. TreeMix and qpGraph employ similar resampling techniques to obtain var-

iance estimates that control the peakedness of their likelihood surfaces.

Our analysis of Native American and Siberian samples largely recapitulates many previous

analyses and identifies many admixture events [17]. Furthermore, we find a similar, but not
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identical topology, to a previous admixture topology [17]. However, our results also indicate

that several features of the true admixture graph remain uncertain. For example, we could not

definitively resolve the question of introgression into the Han lineage from the ancestral line-

age of Ust’-Ishim. Our analysis does not support previous claims that the Saqqaq culture is a

good proxy for the source of gene flow into Athabascans [21] [24], although statistical power

could still be improved.

In both our analysis and previous work, each population is represented by just one or two

diploid individuals. Our simulations suggest that increasing the number of individuals per

population might lead to substantially improved statistical accuracy (see S15 Fig). In addition,

adding more populations, both modern and ancient, could change the results presented here,

as there may be some ancestral components that are not adequately represented by the data we

use in this analysis. We also note that the sample quality was relatively poor for some samples

analyzed here, particularly the Saqqaq, which has many missing sites.

It is also worth noting that there are many other diverse fields such as linguistics, archaeol-

ogy, and ethnography that seek to understand the historical relationships between different

populations. While we do not incorporate data from these fields into this study, we do think

that the results we present here are an important contribution towards clarifying the genetic

evidence by improving on algorithms for admixture graph inference and correcting results

that may have been caused by suboptimal optimization algorithms. However, we emphasize

that the genetic evidence should be used in concert with other diverse fields in order to obtain

an accurate picture of the historical movement and cultural development in the Arctic region

and that the results in this paper should not, without further context, be used to infer cultural

history.

The estimation of admixture graphs is becoming one of the most important tools in popula-

tion genomics. However, methods for estimating such graphs are still in their infancy. Admix-

tureBayes provides a step towards improved estimation and more rigorous quantification of

statistical uncertainty in admixture graph inference.

Methods

AdmixtureBayes model

The AdmixtureBayes program searches the posterior distribution of admixture graphs given

observed SNP data using a Markov Chain Monte Carlo procedure. To assess the likelihood of

an admixture graph we summarize both the admixture graph and the data as covariance matri-

ces of allele frequency changes [2]. The admixture graph covariance matrix is calculated as in

TreeMix. Consider the tree structure in Fig 4 where population 2 is a mix of two ancestral pop-

ulations with proportions w and 1 − w.

The allele frequency in the 4 populations, P0, P1, P2 and P3 are related through the allele fre-

quency changes x0, . . ., x7 at any SNP.

P1

P2

P3

0

B
B
B
@

1

C
C
C
A
�

P0

P0

P0

0

B
B
B
@

1

C
C
C
A
¼

x0 þ x1 þ x2

x0 þ x7 þ wðx6 þ x4Þ þ ð1 � wÞðx5 þ x2Þ

x0 þ x3 þ x4

0

B
B
B
@

1

C
C
C
A
¼ A

x0

..

.

x7

0

B
B
B
B
@

1

C
C
C
C
A
: ð1Þ

Notice that A is a matrix that only depends on the admixture graph through the graph struc-

ture and admixture proportions. We consider the vector of allele frequency drifts terms (x0 � � �

x7) to be stochastic because it depends on a random sample of SNPs. In the neutral Wright-

Fisher model, changes in allele frequencies due to genetic drift can be approximated by a
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normal distribution when the allele frequency change is small and the frequency is far from

the boundaries at 0 and 1. If xi is the amount of drift from a node with allele frequency pi, then

the allele frequency change can be approximated as xi � Nð0; ð1 � e� diÞpið1 � piÞÞ where di =

ti/2Ni is the number of generations scaled with the population size [6]. We collect the factor

ð1 � e� diÞ into a single factor ci and substitute the node-specific pi with a SNP-global p giving

the tractable, approximate, expression

xi � Nð0; cipð1 � pÞÞ:

Consequently, we can approximate the joint distribution of allele frequencies at all leaf nodes

as

P1 � P0

P2 � P0

P3 � P0

0

B
B
B
@

1

C
C
C
A
�� Nð0; pð1 � pÞSÞ; S ¼ A � diagðc0; . . . ; c7Þ � A� ð2Þ

where matrix S is called the admixture graph covariance matrix.

The empirical estimate of the covariance of allele frequencies is denoted the data covariance
matrix. In real data we never observe the population allele frequencies but rather the sample

allele frequencies. This complicates the computation of the data covariance matrix slightly. Let

pij be the sample allele frequency in the i’th population at the j’th SNP, i = 0, 1, . . ., n, j = 1, . . .,

N. They are assumed to come from the distribution

pij �
1

mij
Binðmij; PijÞ ð3Þ

where mij is the number of haplotypes sampled and Pij is the population allele frequency.

Fig 4. An admixture graph for the 3 populations and one outgroup. Considering a single SNP, the quantities x1, . . .,

x7 are changes in allele frequency, w is the admixture proportion, and P0, P1, P2 and P3 are allele frequencies in the

sampled populations. Note that the edge to the outgroup (labeled with x0) is not given a direction. This is because the

Gaussian drift model is reversible, meaning that the population split between the outgroup and the other populations

could have happened at any point along this branch and identical allelic covariance matrices would be produced. For

simplicity, we model the outgroup as the parent of the root node, as described in Method Overview.

https://doi.org/10.1371/journal.pgen.1010410.g004

PLOS GENETICS Bayesian inference of admixture graphs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010410 February 13, 2023 12 / 22

https://doi.org/10.1371/journal.pgen.1010410.g004
https://doi.org/10.1371/journal.pgen.1010410


Denote population i = 0 an outgroup, and consider the intuitive estimate of the covariance

matrix

Sk;l ¼
1

N

XN

j¼1

ðpkj � p0jÞðplj � p0jÞ ð4Þ

If there are any missing values in a summand, we leave that summand out of the sum. Regard-

less of missing values, (4) is inherently biased because the inner term (pkj − p0j)(plj − p0j) does

not have the same mean as (Pkj − P0j)(Plj − P0j). From (3) we calculate the difference as

1fk¼lg
Pkjð1 � PkjÞ

mij
þ

P0jð1 � P0jÞ

mij

which suggests the following bias correction term for Sk,l:

B̂kl ¼ 1fk¼lg
1

N

XN

j¼1

pkjð1 � pkjÞ

mij � 1
þ

1

N

XN

j¼1

p0jð1 � p0jÞ

mij � 1
:

After correcting, we normalize with

ĥ ¼
1

N

XN

j¼1

�pjð1 � �pjÞ; where �pj ¼
1

nþ 1

Xn

i¼0

pij

to take the factor p(1 − p) from (2) into account.

If the sample allele frequencies were normally distributed and independent across markers,

the estimator in (4) would be Wishart distributed and the degrees of freedom would be the

number of markers. The sample allele frequencies are not independent and only approxi-

mately normal, yet we use the likelihood

WðS=ĥ;Sþ B̂=ĥ; dfÞ: ð5Þ

The degrees of freedom, df, is adjusted to take into account the lack of independence. We esti-

mate df using R bootstrapped replicates of S=ĥ which we will denote X(1), . . ., X(R). Let �X be

the average of the bootstrap samples. It would be natural to estimate the df with the maximum

likelihood of the model

Xð1Þ; . . . ;XðRÞ �Wð�X ; dfÞ ð6Þ

However, simulations show that the estimates of df from (6) give results that are less accurate

than the following moment-based estimator (see S14 Fig). We take advantage of the fact that

the variance of the (k, l)’th entry of a Wishart distribution with mean C/df and degrees of free-

dom, df, is

1

df
C

2

kl þCkkCll

� �

to estimate the df as

arg min
df

Xn

k¼1

Xn

l¼1

dVarðXð1Þkl ; . . . ;XðRÞkl Þ �
1

df
�X2

kl þ
�Xkk

�Xll

� �
� �2

ð7Þ

where dVar is the sample variance. This moment-based estimator leads to better performance

of AdmixtureBayes (S14 Fig).
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In practice, to make the inference more robust to deviations from the prior, we normalize

the matrices by using the likelihood

WðcSS=ĥ; cSðSþ B̂=ĥÞ; dfÞ ð8Þ

where cS ¼ ðlog2
ðLÞLþ LÞ=trðS=ĥÞ. For more on this, see the section “Robustness correction”

in S1 Text.

Prior

We define a prior on the topology, G, and on the continuous parameters of the admixture

graph. The continuous parameters include the branch lengths,~c ¼ ðc1; . . . ; cDÞ, and the

admixture proportions ~w ¼ ðw1; . . . ;wKÞ. Let K denote the number of admixture events, L the

number of leaves, and D = 2L − 2 + 3K the number of branches. The full prior is then

PðG;~c; ~wÞ ¼ PðGjKÞPðKÞPð~cjKÞPð~wjKÞ:

The prior on the number of admixture events is a geometric distribution with parameter 0.5

(truncated to max 20). The prior on G, PðGjKÞ, is a uniform prior on all labeled admixture

graphs with K admixture events. To evaluate this prior, we need to calculate the number of

possible topologies for a given number of admixture events. Therefore we have derived the

recurrence formula

NðL; P;K;EÞ ¼ 2ðEþ 1ÞNðL � 1;P;K;Eþ 1Þ

þ ðL � 2P þ 1ÞNðL � 1; P � 1;K;EÞ

þ ðLþ 2P þ 3K � 2E � 2ÞNðL � 1;P;K;EÞ

þ
2ðP þ 1Þ

LðLþ 1Þ
NðLþ 1; P þ 1;K � 1; E � 1Þ

þ
4ðP þ 1ÞðP þ 2Þ

LðLþ 1Þ
NðLþ 1; P þ 2;K � 1; EÞ

þ
4ðP þ 1ÞðL � 2P � 1Þ

LðLþ 1Þ
NðLþ 1;P þ 1;K � 1;EÞ

þ
ðL � 2PÞðL � 2P þ 1Þ

LðLþ 1Þ
NðLþ 1; P;K � 1;EÞ

where L is the number of leaves, P is the number of pairs of leaves that share a common parent,

K is the number of admixture events, E is the number of eyes, and N(L, P, K, E) is the number

of unique topologies with those attributes. Notice that we here allow eyes which otherwise are

disallowed in our definition of admixture graphs. See S1 Text for proof. Then

PðGjKÞ ¼
1

PbL=2c

P¼0
NðL; P;K; 0Þ

For the admixture proportion prior, Pð~wjKÞ, we chose the uniform distribution on the

interval (0, 1).

For the prior on the branch lengths, Pð~cjKÞ, we chose to let all branch lengths be indepen-

dent and marginally follow the distribution

ci � Exp
2L � 2

D

� �

; i ¼ 1; . . . ;D ð9Þ
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The rate of the exponential prior adapts to the topology such that graphs with many branches,

and thereby many admixture events, are expected to have smaller branch lengths. For motiva-

tion, see the section on Robustness correction in S1 Text.

MCMC

The MCMC is implemented as a parallel Metropolis coupled MCMC algorithm [26] [27] to

increase the number of jumps between local maxima of the posterior surface. Because admix-

ture graphs with different number of admixture events also have different numbers of continu-

ous parameters, we use the reversible jump generalization of the MCMC algorithm [28]. The

proposal distribution is a mix of 7 smaller proposals. They are

1. Add an admixture branch to the admixture graph. An admixture branch goes from a source
branch to a sink branch (Fig 5). To make the proposal, a random sink branch, s, is chosen

with probability 1

D where D is the number of branches in the graph (not including the

branch to the outgroup). Next, a random source branch, s0, is chosen from the remaining

branches (including the root/outgroup branch) such that an addition of an admixture

branch would not create a cycle in the graph. If the number of possible sink branches is D0

(s), the probability of the sink position is 1

D0ðsÞ. Next the attachment point on the sink branch

is simulated uniformly. If the branch lengths of s and s0 is c(s) and c(s0) the attachment out-

come has density 1

cðsÞcðs0Þ. If the source branch is the root branch, we simulate the attachment

point with an exponential distribution, Exp(1), instead. The new admixture proportion is

simulated uniformly between 0 and 1, and the admixture branch length, ~s, is simulated

from Exp(1) with density e� ~s . Lastly, the labeling of the two parent branches of the new

admixture node is simulated. The probability of either possible labeling is 1

2
. In conclusion,

the density is

1

D
1

D0ðsÞ
1

cðsÞ
1

cðs0Þ
e� ~s 1

2
ð10Þ

To find the acceptance probability of this proposal, we calculate the proposal probability of

the reverse move (see proposal number 2). The reversible jump Jacobian factor is 1.

2. Remove an admixture branch from the admixture graph. An admixture branch can be

removed if 1) its parent is not an admixture node and 2) its removal will not cause an eye.

Let the number of admixture branches eligible for removal be K0. We choose uniformly

Fig 5. When adding an admixture branch (green), we will randomly draw the branch where it comes from, the

source branch (red). The admixture branch goes into the sink branch (blue).

https://doi.org/10.1371/journal.pgen.1010410.g005
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from that set and remove the admixture branch. The density is

1

K 0
ð11Þ

3. Node sliding. A random branch whose parent is a divergence node is chosen. We move its

attachment point to its source branch a distance λx where x* χ2(1). A node can often be

slid either up and down and sometimes the sliding node meets a bifurcation where it can

slide in either of two directions. We choose the new node position uniformly from the set

of the possible sliding destinations, following the topological constraints defined in step 1.

If the sliding node slides out of the graph, we reject the proposal. The forward density is

w2 x
l

� �
=o where ω is the number of possible sliding destinations for a node when moved a

distance x from its position in the current graph. We compute the backward density using

the same formula. We update λ on-the-fly following guidelines for adaptive proposals in

MCMC [29], eliminating the need for pre-analysis parameter tuning.

4. Random walk on the branch lengths. We add a normally distributed noise to all the branch

lengths. If any branch length becomes negative, we take its absolute value. This is known as

a reflecting boundary random walk. The backward density is identical to the forward den-

sity. The variance of the random walk increments is controlled by parameter s which we

also adapt on-the-fly using adaptive strategies.

5. Resample admixture proportions. We sample each admixture proportion in the graph inde-

pendently from the standard uniform distribution.

6. Random walk on the branch to the outgroup as in step 4 but with another s-value. Negative

proposed branch lengths are again reflected.

7. Random walk on the branch lengths but inside the null space of matrix A. This means that

the proposed admixture graph will have the same covariance matrix—and therefore the

same likelihood—as the previous graph. This proposal is also adaptive, as in step 4.

Graph summaries

In the Results section we explained the two summaries, minimal topology and consensus graph,

which we will define formally here. Furthermore, we introduced the Set Distance used to mea-

sure distances between admixture graph topologies and the Covariance Distance for distances

between admixture graphs. In this section, we define these quantities.

The Covariance Distance between two admixture graphs with L leaves and covariance

matrices S and S0, respectively, is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL

i¼1

XL

j¼1

ðSij � S
0

ijÞ
2

v
u
u
t ð12Þ

For a single node let the descendant set be the the set of its leaf descendants, e.g. t = {l1,

l2, . . ., la}. For a topology, let T be the topology set, which is the set of descendant sets of all its

nodes, except the leaves and the root. This idea of a topology set is similar to the idea in the

software package PhyloNet of considering the set of clusters induced by each edge of an evolu-

tionary network [10] [12]. The minimal topology is the extension of such a topology set to a
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directed graph. The extension starts by adding the trivial descendant sets for the leaves (con-

taining only one leaf) and the root (containing all the leaves). Denote this set T . The minimal

topology has a node for each element of T and there is a connection from node t 2 T to t0 2
T if

t 6¼ t0 ð13Þ

t0 � t ð14Þ

and

∄ t00 2 T nft; t0g : t0 � t00 � t ð15Þ

To summarize a sample of admixture graphs, g1, . . ., gR, using a consensus graph, we first

transform all of them into their topology sets and obtain a sample T1, . . ., TR. The posterior

probability of a node can be estimated by the sample frequency

f ðtÞ ¼
jfT 2 fT1; . . . ;TRg : t 2 Tgj

R

The topology set of the consensus graph at threshold α is

Ta ¼ t 2
[R

i¼1

Ti : f ðtÞ > a

( )

: ð16Þ

The consensus graph itself is obtained by extending Tα to a directed graph with the rules (13)–

(15).

The Set Distance between two graphs g1 and g2 with topology sets T1 and T2 is

jT1nT2j þ jT2nT1j ð17Þ

Running AdmixtureBayes, TreeMix, and OrientAGraph

As mentioned in the Results section, we simulated 20 datasets each from 4 distinct admix-

ture graph models, and ran AdmixtureBayes, TreeMix, and OrientAGraph on each dataset.

We compared the accuracy of each method using three metrics described in the previous

section: the Topology Equality, Set Distance, and Covariance Distance. Comparing their

accuracy is not straightforward because TreeMix and OrientAGraph produce one graph

whereas AdmixtureBayes produces a posterior sample of graphs. In addition, TreeMix and

OrientAGraph assume a fixed number of admixture events, whereas AdmixtureBayes sam-

ples graphs with different numbers of admixture events. TreeMix and OrientAGraph can

estimate a maximum likelihood graph for a fixed number of admixture events, but the

higher the number of admixture events, the higher the maximum likelihood value. There-

fore, the original TreeMix paper suggests iteratively adding admixture events and stopping

when the added admixture event does not pass a test for statistical significance. However, to

simplify the comparison, we ran TreeMix and OrientAGraph with the true number of

admixture events. We considered all graphs produced by AdmixtureBayes, even those with

the wrong number of admixture events. We note that this could increase the error of

AdmixtureBayes.

TreeMix and OrientAGraph first estimate an initial admixture-free tree by iteratively add-

ing best fitting populations in a random procedure. Next, the admixture branches are added
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deterministically (although the exact method for adding branches differs between the two

methods). Because of the randomness of the first step, the starting seed could influence the

results. However, preliminary results showed that repeating the TreeMix maximum likelihood

optimization for different seeds and choosing the highest likelihood graph amongst the

repeated analyses did not change the accuracy of the estimated admixture graphs when analyz-

ing our simulated datasets. Most seeds produced the same maximum likelihood graphs, an

observation also found by Molloy et al. [3]. Therefore, we used only one seed for both TreeMix

and OrientAGraph.

AdmixtureBayes was run on 20 datasets generated from msprime [18] from 4 distinct

admixture graphs (see Fig 1). The Mode graph was chosen as the graph with the highest poste-

rior out of all sampled graphs. Then, the first 35% of each chain was discarded as a burn-in

and 100 equally spaced graphs were sampled from the resulting collection of graphs for use in

the AdmixtureBayes Mean estimates. The exact code for running each of these analyses is in

the SimulationStudy folder on the AdmixtureBayes GitHub.

Data

We analyzed a dataset consisting of SNPs for 12 human populations that was first analyzed by

Moreno-Mayer et al. [17]. We treated the Yoruba population as an outgroup leaving effectively

11 populations with unknown relationships to estimate. One diploid individual was sampled

from each population, except the Koryak, Ket, Greenlander and Athabascan populations,

which each had two diploid individuals. Whole genome-sequencing was performed on each

individual to provide an average coverage between 1X (for the Malta individual) to 44.2X (for

one of the Greenlander individuals). Further details regarding sequencing and data processing

methods are described in Moreno-Mayer et al. [17]. The alleles for the ancient individuals

from the populations Saqqaq, Malta, Anzick and USR1 that were not transversions were

treated as missing. We then filtered out any site for which there was a population with missing

data. In total 251,542 biallelic SNPs were retained. Large numbers of missing SNPs for some

individuals is not a computational problem for AdmixtureBayes, though it does violate the

assumption of even sampling imposed by the Wishart distribution (see Methods, Eq (5)). Both

the original VCF file and the allele count file used as input to AdmixtureBayes are available on

the AdmixtureBayes GitHub.

Supporting information

S1 Fig. In all of our illustrations the direction of edges is from top to bottom, unless

marked otherwise. This multigraph topology has 4 leaves, 1 pair, 2 admixture nodes, 5 diver-

gence nodes, and 1 eye. The root is the node at the very top of the topology. We have not

explicitly labeled the nodes and branches.

(EPS)

S2 Fig. Representatives of the sets T 3;1;1;0(left), U3;1;1;0(center) and S3;1;1;0(right). In all of our

illustrations on labeled or unlabeled topologies, the admixture edges in EA are marked with a

dashed line. Here jS3;1;1;0j ¼ 2, jU3;1;1;0j ¼ 4 and jT 3;1;1;0j ¼ Nð3; 1; 1; 0Þ ¼ 12.

(EPS)

S3 Fig. Illustration of a shape, S1 (left), and the three unlabeled topologies corresponding

to a shape S2 (S2 not explicitly drawn). We have S1; S2 2 S2;0;3;1, jUS1
j ¼ 2 and

US2
¼ fU1;U2;U3g. Furthermore, the leaves of U1 and U2 are indistinguishable, while the

leaves of U3 can be told apart. To see this, follow the path from the leaves to root; in U1 and U2

the path will only depend on whether the parent branch of the first encountered admixture is
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in EM or EA and not on the starting leaf. In contrast the starting leaf does matter for U3 so the

leaves are distinguishable. Hence, jT U1
j ¼ jT U2

j ¼ 1 but jT U3
j ¼ 2.

(EPS)

S4 Fig. The two shapes of Sð5; 2; 0; 0Þ, denoted S1 and S2 are illustrated above. Here, US1
¼

fU1g and US2
¼ fU2g, because there are no admixture edges. Interestingly, the shape S2 exhib-

its more symmetry than the shape S1. To see this, let G1 and G2 be representatives of U1 and U2

with leaves labeled l1, l2, l3, l4, l5 from left to right. In both cases jT 0U1
j ¼ jT 0U2

j ¼ 5! ¼ 120. The

group HG1
¼ he; ð12Þ; ð34Þi has four elements and so jT U1

j ¼ 120=4 ¼ 30. The group HG2
¼

he; ð12Þ; ð34Þ; ð13Þð24Þi has eight elements and so jT U2
j ¼ 120=8 ¼ 15. Altogether, N(5, 2, 0,

0) = 15 + 30 = 45. Notice that the leaves l4 and l5 form a pair in one fifth of the elements in

both jT U1
j and jT U2

j although the two sets are of different size.

(EPS)

S5 Fig. Example graphs and their predecessors from each sub case 1.1)—2.4). The graph ρ
(G1.2) is the only labeled admixture graph that doesn’t have a predecessor, and the ultimate

predecessor of every other graph.

(EPS)

S6 Fig. From the posterior AdmixtureBayes samples, we computed the posterior probabil-

ity of all nodes. The above graph is the smallest directed graph with all the nodes that have a

posterior probability higher than 75%. Each internal node is colored according to its posterior

probability, as described in Fig 3.

(EPS)

S7 Fig. From the posterior AdmixtureBayes sample, we computed the posterior probabil-

ity of all minimal topologies for several subsets of the populations. Here we show the three

topologies with the highest posterior. The listed posterior for each graph represents the per-

centage of sampled graphs that have this minimal topology induced by the relevant set of

nodes. For example, in 96% of graphs sampled, if only the leaves Athabascan, Koryak, and Saq-

qaq are considered, then all non-root and non-leaf nodes have a topology set of {Athabascan,

Koryak}. The percentages in each node are the percentage of sampled graphs that have a node

with the topology set implied by that node. For example, in 96% of graphs sampled, if only the

leaves Athabascan, Koryak, Saqqaq are considered, then there is at least one node with the

topology set {Athabascan, Koryak}. Whether a graph with this node belongs in the top left or

bottom left box will depend on the presence or absence of a node with the topology set {Atha-

bascan, Saqqaq}, which happens in 1% of all sampled graphs.

(EPS)

S8 Fig. Continuation of S7 Fig.

(EPS)

S9 Fig. The method used to calculate the Set Distance between two admixture graph topolo-

gies (left). First, the topologies are transformed in their descendant sets/topology sets (middle).

The distance is then calculated as the symmetric set distance between the two topology sets

(right).

(TIF)

S10 Fig. Examples of how the minimal topology is calculated. First, we derive the topology

set (middle) from the topology (left). The minimal topology (right) is the smallest possible

graph that is consistent with the topology set. Note, node labels assigned to the topology (left)
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are arbitrary and do not identify corresponding nodes in the minimal topology (right).

(TIF)

S11 Fig. Here, we plot the trace plots for our simulated dataset. Each chain is shown as a

separate column. Each summary statistic is shown as a separate row.

(EPS)

S12 Fig. We plot the Gelman-Rubin convergence diagnostics on our simulated dataset for

our three summary statistics after a burn-in fraction of 0.35. A rapid convergence to 1 indi-

cates that this is a sufficient burn-in period.

(EPS)

S13 Fig. We here show the autocorrelation plots for the summary statistics of our simu-

lated data after a burn-in fraction of 0.35. We only show the results for Chain 1 and do not

include the number of admixture events as the autocorrelation shows strange behavior for dis-

crete variables.

(EPS)

S14 Fig. We simulated admixture graphs with 10 leaves and 0, 1 and 2 admixture events.

Using these graphs, we simulated datasets using ms with different sample sizes. The top plot

illustrates the ratio between the maximum likelihood degrees of freedom estimate from Eq (6)

and the variance estimator in Eq (7). We ran AdmixtureBayes with the maximum likelihood

estimate (MLE), the variance estimate (VAR), and 2 and 4 times the variance estimate (VARx2

and VARx4 respectively). We calculated the Mean Topology Equality, which was maximized

when using the VAR estimates.

(EPS)

S15 Fig. We here plot the results of our simulations evaluating the effect of sampling small

numbers of haplotypes. Each boxplot represents the samples of posterior probabilities obtained

by running AdmixtureBayes on 100 different datasets, each simulated from the same model

with the underlying population history ((pop1,pop2),pop3). We plot a horizontal dashed line at

1/3, which would represent equal posterior probability at each topology. AdmixtureBayes does

sample some admixture graphs that do have admixture events, but the 3 non-admixed topolo-

gies we list here account for more than 99% of the sampled admixture graphs in each case, so we

simply ignore sampled topologies that do have admixture events. We see that increasing the

number of sampled haplotypes causes the posterior probability to concentrate on the true graph,

while AdmixtureBayes correctly models the uncertainty inherent to sampling fewer haplotypes.

(EPS)

S16 Fig. Here we plot the results obtained when running TreeMix and OrientAGraph on

our dataset of Native American and Arctic populations. We run each method with 3, 4, and

5 admixture events as these were the numbers of admixture events in nearly all graphs sampled

by AdmixtureBayes after the burn-in period (see S11 Fig).

(TIF)

S1 Text. Supplementary information.

(PDF)
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genomics and complex population history of Papio baboons. Science Advances. 2019; 5(1). https://doi.

org/10.1126/sciadv.aau6947 PMID: 30854422
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